
Replication for Language Models
Problems, Principles, and Best Practices for Political

Science∗

Christopher Barrie† Alexis Palmer‡ Arthur Spirling§

Word count: 9654

Abstract

Large Language Models (LMs) are exciting tools: they require minimal researcher
input and but make it possible to annotate and generate large quantities of data. Yet
there has been almost no systematic research into the reproducibility of research us-
ing LMs. This is a potential problem for scientific integrity. We give a theoretical
framework for replication in the discipline and show that LM work is perhaps uniquely
problematic. We demonstrate the problem empirically using a rolling iterated replica-
tion design in which we compare crowdsourcing and LMs on multiple repeated tasks,
over many months. We find that LMs can be accurate, but the observed variance in
performance is often unacceptably high. Strict “temperature” control does not resolve
these issues. This affects downstream results. In many cases the LM findings cannot
be re-run, let alone replicated. We conclude with recommendations for best practice,
including the use of locally versioned ‘open’ LMs.

∗First draft: May 15, 2024. This draft: May 1, 2025. For helpful comments on earlier versions we thank:
Ken Benoit, Jim Bisbee, Brenton Kenkel, Nick Pangakis, Adam Breuer, Scott de Marchi, Clara Suong, and
audiences at APSA, MPSA, and the AI Social Science Workshop, Nuffield College.

†Assistant Professor of Sociology, New York University (christopher.barrie@nyu.edu)
‡Neukom Fellow, Dartmouth College (alexis.palmer@dartmouth.edu)
§Professor of Politics, Princeton University (arthur.spirling@princeton.edu)

1



1 Introduction

Two intellectual currents capture an increasing share of political science attention: research

transparency and (Large) Language Models (LMs).1 For the former, we mean the idea that

scholars can understand precisely what a previous researcher did as a matter of science, and

that they can subsequently reproduce or replicate that workflow or finding independently. By

“language models” we mean “computational frameworks designed to predict the likelihood

of a sequence of words” (Linegar et al., 2023) which can be used for many tasks, including

generating human-like text or performing coding operations to a better-than-expert stan-

dard.2 Though neither current is truly new, their recent incarnations have already spawned

large literatures on possibilities and best practices.

In the case of replication broadly construed, we see recent efforts to demarcate exactly

what standards are or ought to be, both theoretically and practically (e.g. Alvarez and

Heuberger, 2022; Brodeur et al., 2024; Gundersen, 2021). In the case of LMs, research de-

scribing their merits and how they might be incorporated into political science pipelines is

abundant (e.g. Argyle et al., 2023; Gilardi et al., 2023; Mellon et al., 2024; Velez and Liu,

2024). But with rare exceptions (e.g. Bisbee et al., 2023), there is surprisingly little research

in the obvious area of overlap between these literatures. That is: political science has almost

no work on replication and research transparency with LMs. Collectively we lack a common

understanding about what it means for LM studies to “replicate”. Related, we are also

ignorant about whether LM-based studies do—as a matter of fact—replicate, or even the

standards for what that replication might entail. This is concerning for scientific integrity,

and leads to an odd and potentially unfair asymmetry of standards for researchers. Specifi-

cally, while we impose increasingly thorough (i.e. onerous) requirements on quantitative and

qualitative scholars using “conventional” data setups, our instructions and norms for those

1We use “language model” rather than “large language model” in our treatment here, but this is a matter
of style not substance.

2We are concerned here with models that have decoder components, meaning they can generate text.
That is, we are not including BERT (Devlin et al., 2019) and related encoder-only models.
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using LMs are ambiguous.

In this paper, we make two key contributions by laying out, in theory and as an empirical

matter why replication with LMs is cause for concern. Our first contribution is to survey the

state-of-the-art for LM replication requirements in political science and provide a general

theoretical framework for how LMs compare to commonly accepted ‘visions’ of replication.

We find the replication requirements to be minimal. We go on to show that this situation

contrasts markedly to the current three ‘visions’ of replication used as a matter of long-

standing practice in the discipline. Moreover, it differs in a way we claim may be uniquely

problematic for LM research: such studies inherit the weakness of both traditional “data

and code” replication arrangements (e.g. King, 1995) and more modern “stochastic” set ups

common in crowdsourcing (e.g. Benoit et al., 2016).

Our second contribution is to demonstrate the empirical nature of the problems to which

this theoretical problem gives rise. Here we provide an innovative multi-task, multi-run,

multi-time period replication exercise. To do so, we iterate a slew of similar labeling problems

given to both (multiple) LMs (GPT4, Gemini, Llama) and crowdworkers over many months.

These jobs range from coding the ideology of manifestos to identifying types of protest events

to detecting certain political valences in speeches. The idea is to precisely calibrate exactly

how replicable one can expect machines to be in practice, and where (what types of tasks)

we can expect better (lower variance, more replication) or worse performance. The human

workers provide a baseline comparison in terms of replicability. At a high level, the news

is bad: while it is true that LMs can be (very) accurate relative to a gold standard, they

also show considerable variance over time. And this is to say nothing of cases where they

simply will not run at all, and thus fail the most basic requirement (see, e.g., Benureau and

Rougier, 2018) of computational replication. Contrary to popular belief, the problems do not

go away even if one sets “temperatures” (or equivalent tunings) to zero; indeed, this induces

new but unpredictable problems with replication. Unsurprisingly, this variance affects the

substantive answers we get downstream—that is, in subsequent analysis in which the labels
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code variables for a statistical model. We demonstrate this by replicating select analyses in

high profile studies by Bor and Petersen (2022) and Hopkins et al. (2024) substituting LMs

where those authors relied on humans.

In the next section, we define what we mean by “replication” and why it is valuable.

We then describe the scope of our efforts here and state-of-the-art practice for scientific

transparency in political science LM work. In Section 3 we give some new ‘theory’ on

replication, and describe where LMs awkwardly fit relative to traditional practice. We also

explain the unique nature of the concerns their use raises. In Section 4 we give our research

design: the tasks, comparisons, models and time periods for the study. Section 5 reveals our

results, including our partial replications of published studies. Section 6 offers some advice

to practitioners and we then conclude.

2 Definitions, Scope and Current Practice

There can be few terms as widely embraced, and as differentially defined, as “research

transparency”—and by extension “replication” and “reproducibility” (see, e.g., Goodman

et al., 2016). To fix ideas, for now we will define “replication” to be the idea that a scholar can

take the materials from a given paper—its exact data, programming code, information on the

operating system and environment used—and produce the same results as were reported in

that paper. This will be our focus. We will say that “reproducibility” is the broader enterprise

of closely following the procedures of the original study on a new, independent sample or

dataset and obtaining similar results in the second study relative to the first. We candidly

acknowledge that some disciplines (including economics, e.g. Duvendack et al., 2017) and

authorities (including the NSF, see Cacioppo et al., 2015) swap the definitions of these terms

or add considerable nuance (see e.g. Brodeur et al., 2024; Miguel et al., 2014; Gundersen,

2021). We are also aware that there is a more casual understanding of transparency to mean

something akin to the “interpretability” or “explainability” of moving parts of complex
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machine learning models. But we seek to follow the recent practice of political science in

our demarcation here. In any case, we concur fully with Alvarez and Heuberger (2022,

149) that transparency—however defined—“strengthens the quality of research, heightens

accountability, and increases trust in the discipline.”

Even more specifically, we are interested here in replication for data labeling tasks. By

the latter we mean problems where the goal is to give numerical (“this military outcome was

a 90% victory for A”) or categorical (“this manifesto is [Conservative/Liberal/Centrist]”)

labels to items (conflicts, manifestos), based on their features (their words, their covariate

values etc). We might be labeling because we want to measure a latent quantity, or simply

to given prototypical examples of cases, or many related problems in between.

Researchers have been quick to use LMs to perform such labeling tasks. For instance,

Gilardi et al. (2023) use chatGPT to, inter alia label topics and frames of documents. Mellon

et al. (2024) use multiple LMs to code open-ended responses in surveys. Of course, scholars

have gone beyond these narrow tasks; they have used LMs to generate data (e.g. Argyle et al.,

2023) or even as treatments in experiments (e.g. Argyle et al., 2023). Almost everything we

say about replication for simple labeling problems will apply to those cases also. Indeed,

precisely because those protocols have more complex moving parts we think the problems

are likely deeper. We limit ourselves to the simpler, base tasks for exposition purposes and

as a type of “best case” scenario.

2.1 What is Replication for? Current Advice and State of the

Art

Why do we seek replication at all—that is, what is the motivation, in general? Most narrowly,

its function is to avoid fraud or basic but calamitous mistakes (see, e.g., Schmidt, 2009).

Studies that cannot be replicated must have their results taken on trust. But this inability

to verify findings (including ones that are in fact false) is not ideal for building on them.

Most broadly, researchers provide and seek replication materials to assess how and in what
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specific ways findings are robust or not (see Ankel-Peters et al., 2024). In this case, there

is no question of bad faith or error from the authors. The idea is to do more than simply

run the files and check the results are as the researcher reported; rather, the goal is to

understand how (potentially small) deviations from the original code/data could lead to

different conclusions. This may yield new scientific findings per se but also allows for more

confidence in designing policies for the noisy ‘real world’ based on such claims. Nothing that

follows below requires commitment to a particular point between these extreme cases. But

we would note that in practice, even the most basic requirement—that authors received the

output they say they did—cannot be properly verified in many LM-use cases. Notions of

“sensitivity” or “robustness” for LMs are even less observable.

We investigated the “advice to authors” (or equivalent) replication (typically called “Re-

search Transparency”) documentation for the five journals on this list with the highest impact

factors in 2023. These are: International Organization, American Political Science Review,

American Journal of Political Science, Political Analysis and British Journal of Political

Science. None of them mentioned “(large) language models” in particular, nor words to that

effect. For completeness, we did the same for top journals in Economics and Sociology, and

found the same.

This absence may be because LMs are still too niche a topic for specific instructions. With

that in mind, we investigated the actual (that is, posted) replication materials for papers

using LMs in recent times. Typically, these consist of the text of the prompt call(s) to the

LM, plus information on the version/date of the model in question (e.g. Argyle et al., 2023;

Gilardi et al., 2023; Mellon et al., 2024). Researchers have provided tools to make this sort

of workflow record more formal, integrated and “automatic”, though these generally assume

one can query the same (online) product over multiple runs (e.g. Patel et al., 2024; Barrie

et al., 2024). Of the limited research there is into replicating LM-based politics studies, the

conclusions are not very encouraging. For instance, Bisbee et al. (2023) attempt a replication

of Argyle et al. (2023). Specifically, they use the same LM prompts as Argyle et al. (2023)
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some months apart in the hopes of producing the same synthetic survey data as the earlier

authors. They find exact replication to be “impossible”; nor could they determine “precisely

why the responses changed” (Bisbee et al., 2023, 12–13).

Whether the current—too permissive in our view—standard for claiming that replication

materials have been provided is “enough”, depends in part by what one means, exactly,

by replication. And within that set of definitions, what one thinks the optimal tradeoff of

standards versus costs (imposed on authors and others) should be. We now turn to that

subject.

3 Three Visions: Deterministic, Stochastic and Rule-

based Replication in Political Science

Broadly speaking, there are three different visions of replication for coding tasks in political

science. First and perhaps the most common understanding as taught in modern graduate

programs, is that exemplified by King (1995). There the idea is that a scholar provides the

data and programming code that produces their (published) results; then another indepen-

dent researcher can take those materials and obtain exactly the same outputs.3 Although

the underlying estimation or calculation routine might involve some stochastic elements—for

example, it might require Markov chain Monte Carlo methods to approximate an integral—

we will denote this replication vision as deterministic. We use this term to connote the idea

that the data and the code is generally fixed between runs of the replication. Where it does

involve non-fixed elements, the variance of these can be reduced to zero by, for instance,

setting a specific seed for random number generation. For example, in a topic model, we

might fully control the possibilities by setting (fixing) the prior for the background Dirichlet

distribution for a given run.

A special computational case of this vision is discussed by Benureau and Rougier (2018).

3Brodeur et al. (2024) call this “computational reproducibility”.
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In particular, those authors also refer to the above idea (same data, same code, producing

same results) as a procedure being “reproducible” (“R3”). But they argue that this is pred-

icated on two explicit building blocks: that code is “re-runnable” (“R1”) and “repeatable”

(“R2”). A procedure is re-runnable if it can at least be executed, whether or not it returns

the ‘same’ result. For example, if a program contains a line of code that is no longer gram-

matically part of the language of the system, it does not even meet the R1 standard.4 A

computer procedure is repeatable if it produces the expected output over multiple runs of the

program. As mentioned, this might require setting a seed for random number generation,

but it is broader than that. For example, it might require the user has sufficient permissions

to be able to run the code multiple times.5 Therefore it is only reproducible if the code meets

both of these expectations. We will return to these issues below; we will show that many LM

replication practices do not meet the repeatable, or even the re-runnable, sub-standards.

An alternative vision is exemplified by Benoit et al. (2016). In their own terms, those

authors seek “reproducibility of the data” (Benoit et al., 2016, 278). They argue that the

appropriate goal is to “replicate data production, not just data analysis.” And thus the key

intellectual product should be not some specific data set the original researcher gathered

but “the published and reproducible method by which the data were generated” (emphasis as

original). Ultimately, those authors suggest crowdsourcing. They show that researchers can

use online platforms such as Mechanical Turk to give crowdworkers coding tasks such as

placing party manifesto sentences on a spectrum from left to right. Because this can be done

cheaply, quickly and reliably, it allows a new type of replication relative to that described

by King (1995). That is, to the extent that a researcher seeks to replicate coding decisions,

they can give similar but not necessarily identical instructions to similar but not necessarily

identical workers on similar but not necessarily identical platforms. This will produce a new

and different data set in every case, with the hope—and indeed evidence that—the overall

4For instance, unix.time is now a defunct function in Base R; it has been replaced by system.time.
5This can be a problem when interacting with websites: anti-bot security may ban IPs that make too

many consecutive requests
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codings will remain the same. We call this vision stochastic replication. We use this term

to connote the idea that the data is not generally fixed, but is by design changing—albeit

not very much on average—between runs of the replication. The variance of the non-fixed

elements, for instance because different workers have slightly different thresholds for saying

a sentence is “liberal”, cannot be reduced to zero. Nor do we seek to reduce that variance

to zero. Note that there is, in fact, nothing unique about online crowdsourcing—at least

in terms of the replication itself. That is, one could imagine replicating the data by using

off-line undergraduate research assistants, albeit they might be more expensive and slower.

A final and more traditional type of “replication” occurs often, but not exclusively, in

qualitative studies. We have in mind “rule-based” codings where the rule can be expli-

cated fully in a simple way, typically without any statistical machinery or estimation at all.

Once known, the rule can be manually applied by any scholar from simply reading previ-

ous encoding descriptions. That is, there is no (or very little) ambiguity over what a given

coding decision should be. As an example, consider which states are denoted as being in

the “South” when studying the United States. In his classic work on Southern politics, Key

(1949) defines the subjects as being the eleven states that joined the Confederacy. This is

a coding of the data, though a very straightforward one. It can be replicated by taking the

same definition and applying it to other situations. We could also modify it; for instance,

Bateman et al. (2015) add another 6 states to this number because their focus is the “sev-

enteen states mandating racial segregation in schools before the Brown decision of 1954.”

As another example, consider the conflict literature where the task is to code an event as a

“civil war” (or not). There, “1000 deaths annually” is typically the “preferred threshold” for

inclusion (262 Sambanis, 2001). One might argue over some edge-cases where the number

of deaths is not certain, but generally the coding rule itself is not open to much dispute.
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3.1 Strengths and Weaknesses of the Visions

None of these visions is axiomatically better than any other, and they have different strengths

and weaknesses. In the case of deterministic replication, one obvious strength is that out-

comes are, indeed, exactly replicated: the end-user sees the figures, tables, tests and p-values

exactly as the original researcher did. Of course, this is predicated on the replicator having

access to exactly the same resources as the original researcher. That is, they may need exactly

the same versions of the same software, its libraries and routines as the original researcher

(in the sense of Benureau and Rougier, 2018). That is, replication is “fragile” because it de-

pends on specific instantiations of systems. We can perhaps take steps to make it less fragile

by, for example, recording/providing a particular seed for the random number generation.

At a higher level, we can “dockerize”—i.e. use products like Docker (see Boettiger, 2015).

These allow us to place virtually all materials including specific software versions in single

“containers” for others to use later. This vision of replication guards against simple fraud

and catastrophic coding errors, but may not immediately lend itself to robustness assessment

if the precise nature and motivation for underlying ‘deep’ coding decisions (e.g. what counts

as a war?) is not documented.

In the case of stochastic replication we do not necessarily need access to exactly the same

“systems” to replicate the materials of interest—the data. That is, by design, crowdsourcing

should work on different platforms and different people: we expect to get the same results,

on average, for whether Labour is to the left of the Conservatives in their 1983 manifestos.

This does not mean we cannot make a given data replication “better”. We could improve

things by better documenting exactly what, how and when we did our coding: the platform,

the nature of the workers, the training they were given, the tasks and attention checks etc.

Still the point stands that it is not fragile as regards the systems being used. But the

price we pay is that we will not typically obtain exactly the same results. Because one

typically provides prompts for workers, this vision allows for more in-depth assessment of

the (potential) robustness of those instructions in terms of their underlying concepts. But
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fraud or human error may be harder to detect.

In the case of purely rule-based replication simplicity makes it almost foolproof. But

this is also a limitation in terms of the types of problems—and their scale—that one can

deal with. For example, it might be prohibitively difficult to produce rule-based metrics

for interpreting the content of 19th Century landscape pictures; and even if one had such

a rubric, applying, adjusting and reapplying it in a timely fashion to thousands of images

would be difficult. Still, precisely because the set up is simple, fraud or error (e.g. denoting

Pennsylvania as a “southern” state) should be easy to spot. Checking robustness is perhaps

harder than with stochastic methods (one cannot trivially run the analysis again, overnight),

but easier than with deterministic ones (one has access to the motivation for the decisions

made ‘pre-code’).

To be clear, these visions are ideal types; researchers might use methods somewhere

between the visions in a given study, or have different parts of a study follow different

visions. But ideal types are helpful to fix ideas when thinking about the nature of Language

Model replication.

3.2 The Problem with Language Model Replication

The central problem with replication for Language Models is that—as we will show—the

process exhibits the weaknesses of deterministic, stochastic and rule-based replication, with-

out the strengths of any of them. To make this point clear, consider Table 1. There we

document replication practices as a typology. What defines the typology is first, whether

exact replication is possible; second, whether replication is fragile in the sense we discussed

above.
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Exact Replication Possible?

No Yes

Fragile and/or

Yes

Language Models Deterministic Replication

system dependent?

- static code, static data

- e.g. King (1989)

No

Stochastic Replication Simple, rule-based

- crowdsourcing, undergrad RAs - expert agreed standard

- e.g. Benoit et al (2016) -e.g. Bateman et al (2015)

Table 1: Language Models present a replication problem: they do not allow exact replication,
but they are also fragile and system dependent.

Starting at the top right and moving clockwise:

• Deterministic Replication (top right): exact replication is possible (yes), but one needs

exactly the system/software that the original researcher had. So it also fragile (yes).

• Simple, rule based (bottom right): here we mean traditional coding in the sense of

what constitutes the Southern states above. Clearly, exact replication is possible: a

given state is either on the list provided by Key (1949) or Bateman et al. (2015) or it

is not. It is also not fragile in terms of computational system requirements: there is

no computation, and so long as we have access to the coding rule, we should be fine.
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• Stochastic Replication (bottom left): as we said above, exact replication is not possible.

We cannot obtain—nor generally do we seek to obtain—precisely the same dataset

that the original researcher used. On the other hand, the coding is generally not

fragile because it does not (should not) rely on having raw materials (data and code)

identical to that of the original researcher.

The top left cell of Table 1 contains our understanding of where Language Model repli-

cation sits conceptually. Notice that per the schema, LMs do not permit exact replication.

This point has been noted by others: LMs generally give (at least slightly) different results

each time they are run. For some LMs, in some versions, one may be able to adjust a “tem-

perature” setting that alters how deterministic the output of a given run is. We will show

this is no panacea, but even in the cases in which adjusting temperature increases stability,

this is immediately nullified by any background updates to the model. In that sense, LMs

are like crowdsourcing.

But LMs are also fragile in the sense that one is dependent on knowing the exact model

and specification used by another researcher when obtaining results. Though a slightly

separate matter, a point we will make below is that this can be especially difficult in the LM

case because whole product versions (say LLaMA1 or GPT2) simply cease to be supported.

And, especially for proprietary LMs, an independent version cannot be uploaded and kept

in a container for others to use freely (Rogers et al., 2023). This fragility, we would argue,

makes LMs unlike crowdsourcing. We recognize that the same human workers may not be

available, and indeed, the platform on which their labor is provided may cease to exist. But,

more generally, the basic model—which we take to be the average human brain doing the

task—is still typically available via some other service.

Our general point is that LMs have features that may uniquely make their analyses hard

to replicate. And our specific point is that we think claims that LMs replicate in a way

fundamentally similar to crowdsourcing are too optimistic. They have the problems and

flaws of both crowdsourcing and of more traditional replication efforts. It is an empirical
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question as to whether this is truly a concern, and how much we should actually worry. That

is the subject of the next section.

4 Main Research Design: Mimicking Replication Over

Many Months

Our research design has three components: the models (or crowdworkers), the tasks, and

the experimental procedure itself. We selected coding problems with “gold standard” code-

books and that reflect current practice—i.e. procedures used to produce labels for published

studies—in the discipline. We designed the LM (and crowd) prompts to mimic as much

as possible the prompts and examples provided to the original coders. To reiterate, we do

not doubt that more highly specified or iterated prompts might produce different—perhaps

lower variance—results. But our goal here is to replicate current practice in the discipline,

and to report where it might be problematic.

In terms of procedure, we had each machine code each task using both a static sample and

a changing “dynamic” sample. The “static” component is 1000 (simple random sampled)

rows of data. For the “dynamic” sample, we took a monthly subsample of 1000 rows for

each data source such that it did not contain any of the observations present in the static

data (though there may be overlap month on month). The LMs coded both the static and

monthly datasets each month, while the crowdworkers coded only the static.

The reasoning for this “static v dynamic” setup is two-fold. First, to determine how

well an LM could reproduce findings using the exact same data (as would be the case for

conventional code-only replication materials) and similar data (as would be the case were

someone to try to replicate with a similar design but different data). Second, we wanted

to test for any effect of data contamination or “leakage.” That is, we suspected that the

LM might in some way “remember” (store) the original static data and task we gave it. It

might then report the same answers with low variance (compared to the changing monthly
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sample)—we want to guard against this, or at least calibrate the extent of this effect. We

compare the models by their accuracy, how close they were to the ground truth, and variance,

how much they varied relative to themselves overtime. Therefore, the question is not just

can the machine accomplish the task, but can they do so in a predictable way such that

another researcher could arrive at similar results.

4.1 The Tasks

We selected two data sources for the main analyses, coding one or two outcome variables for

each. These data sources were (originally) built using either crowdworkers or a large pool

of expert coders. We therefore also employed crowdworkers against which to compare our

results to the LMs.

1. Manifestos The first dataset (and general setup) is from Benoit et al. (2016) and con-

sists of a series of short text sequences taken from the Manifesto Project. Specifically,

we capitalized a section of text within its surrounding two sentences and prompted the

LM to focus on this section. We then asked the LM to code whether the piece of text

pertained to a particular (social v economic) subject matter and then into ideological

bins (“Very left/liberal” to “Very right/conservative”). Crowdworkers must do the

same.

2. Protest Events The second dataset is from the Dynamics of Collective Action dataset

of events such as protests and strikes in the United States (Earl et al., 2003). We have

the original PDF text sources from Stoltz et al. (2023). We elected to redo the optical

character recognition (OCR) process for these news sources given the frequency of mis-

recognitions in the original data. To do this, and to simplify proceedings, we retained

only observations coded as occurring in one state and organized by one main group

from the original codings provided in Earl et al. (2003) and Stoltz et al. (2023). We

then used gpt-4-vision to extract the test from the PDFs before manually inspecting
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the text returned.6 For the LM classification runs, we focus on participation (crowd

size) and form (type of protest) in the main analyses for reasons of parsimony.

4.2 The Models (and Crowdworkers)

For our “main” analysis, we selected three LMs: two commercial (paid) LMs and one “open-

source” LM.7 The full prompts we gave are detailed in SI A. The basic details of the models

are:

1. GPT-4 from OpenAI (Bubeck et al., 2023). We connected to the OpenAI API, and

also employed “function calling” code logics to force a specified output type: i.e., by

specifying integer options, the model is “forced” to output a 0 or 1 for a simple binary

annotation task. We used similar methods for the other two models.

2. Gemini from Google. For the first two months of the study we used gemini-1.0-pro

(April and May); in subsequent months we used gemini-1.5-pro. When Gemini was

updated, it was necessary to use the paid tier in order to code in the volume needed

and use function calling.

3. Llama-2 from Meta, installed April 2024. This model is open-source and we ran it

locally (as in, on our own computers, not querying the API). We used the version

accessible through huggingface8 which has additional functionality over the base model,

including integration with vllm which allows for faster responses.

We also gave the task to crowdworkers each month. To recruit them, we used Amazon

MTurk with the restriction that the workers come from the United States. They were also

required to be “Masters”—an internal quality constraint offered by the provider. Each

6During manual inspection, we removed OCR attempts that still returned an error or truncated text after
two retries. This resulted in a final dataset of 6581 observations.

7We recognize that some do not characterize Llama as open-source due to lack of transparency about
e.g., precise training data and licensing restrictions.

8https://huggingface.co/meta-llama/Llama-2-13b-chat-hf.
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worker coded 30 manifestos and/or 10 protests depending on task. . Given the higher cost

of using crowd-workers as compared to LMs, especially when replicating across months, we

only showed them the static samples for each task. We used an app we designed for this

purpose, screenshots of which can be found in SI B.

For each model, for each task, we aimed to repeat the coding procedures on the 25th

day of each month, beginning April 2024. As detailed below for the Gemini model, there

were delays to this due to changes in the API. For the months of October and November for

the OpenAI runs, the models returned empty annotations meaning we reran both of these

months in early December. As of 2025, we now run the tasks every two months.

5 Results

As of today (May 1, 2025) we have completed nine monthly iterations of the procedures

above. We now detail both the quantitative “top line” results, and a qualitative case-study

of our experience using a particular LM.

5.1 Quantitative Results

For each of our datasets and each outcome, we calculate three test statistics: recall, precision,

and F1 score. Recall measures how many of the positive class (sometimes referred to as the

target class) observations were correctly identified as positive. Precision measures how many

of the positive class items are actually positive. The F1 score is a metric that combines

information from both precision and recall, calculated as the harmonic mean of the two. We

display the results of these analyses in the two panels of Figure 1.

Panel A (top) of Figure 1 has each of the LM/task combinations on the y-axis. When the

dots are further right, this model is doing “well” on this task. For instance, openAI-static-Protests

is the highest performing model/task combination, with an F1 of around 0.7. Meanwhile, the

llama-monthly-manifestos—i.e. Llama coding the manifesto monthly/dynamic sample—
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has the lowest average F1 of around 0.3. There are two points to make here: first, there

is considerable variation in performance across models and tasks; and there is considerable

variation within models and tasks—as in, over time.

Panel B (bottom) makes this clearer. Here, we show the averaged variance metrics for

each of the outcomes combined (Panel B) across the monthly and static samples.9 That is,

for each outcome (e.g., “Economic” versus “Social” for the manifesto sentences), we calculate

the variance for the recall, precision, and F1 for that month’s monthly (varying) sample or

that month’s static (non-varying) sample and average these. The figure is ordered from

highest average variance at the top to lowest at the bottom. In SI D, we also include full

tables of aggregate accuracy scores across the three metrics for each data type and source as

well as the observed variance in each of these metrics.

From panel B, we see the rows for the crowd are generally nearer the bottom. This means

that the variance in accuracy for the LMs is higher than for crowdworkers, on average. Of

course, this does not mean the crowdworkers were more accurate, on average. In fact, the

LMs are generally more accurate. In addition, some LMs are very consistent on some tasks.

But our point is that LMs exhibit properties that make them much more vulnerable to failed

(deterministic) replication than other forms of data annotation (i.e. crowdworkers).

9Note that the variance for Llama is at −∞ as we are taking the log of variances to better distinguish
the models and crowd visually. It is effectively 0.
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Figure 1: A, top: Accuracy metrics across all runs for each Source (LM or Crowd)-Type
(monthly or static)-Dataset (Manifestos or Protests) triplet; B, bottom: Overall variance of
accuracy scores across all outcomes and runs for each Source (LM or Crowd)-Type (monthly
or static)-Dataset (Manifestos or Protests) triplet.
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Full results for each outcome and run are displayed in Figures 8 to 10 in SI C. We also

give descriptions of what we found. For now, we summarize our main observations:

1. For the manifestos, the crowdworkers perform very well (by LM standards) and their

variance is generally lower than the LMs.

2. For the protests crowdworkers are less accurate than the LMs, but very consistent in

their performance.

3. Crowdworkers struggle in predictable ways: for example, they are least accurate

when manifestos should have ‘extreme’ codings (far left/far right).

4. LMs struggle in unpredictable ways: for example, GPT made errors on more mod-

erate (liberal) manifestos, but it is hard to know why.

5. Comparing across LMs, errors and performances appears to be idiosyncratic: for

example, Llama has recall on some tasks on a par with GPT but generally much lower

variance.

6. Open LMs have the best replication performance, at least in terms of low variance.

For instance, on the static tasks, Llama has practically zero variance in its coding

performance.

To reiterate, crowdworkers are generally lower variance than LMs—the exception to this

being open LMs (Llama)—for which the variance is zero when re-coding the same data.

Crowdworkers also fail in somewhat predictable ways: this is not true of the LMs.

5.2 Additional Populism task

We also wanted to determine the stability of LM outputs when tasked with a more challenging

construct to code: populist language. Here, we compared LM codings with the (BERT)

machine-labelled data from Bonikowski et al. (2022), which consists of speeches by Democrat
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and Republican presidential nominees in the United States. The LM is required to code the

texts as being “populist” or not, in line with a definition given by the original authors.

Because these data were not labelled by crowdworkers in the original paper, we do not send

these to the crowd as well. We display the results in 2.

Figure 2: A: Accuracy metrics across all runs for each Source (LM)-Type (monthly or static)-
Dataset (Populism) triplet; B: Overall variance of accuracy scores across all outcomes and
runs for each Source (LM)-Type (monthly or static)-Dataset (Populism)) triplet.

We see that for some LMs—and Gemini in particular—the variance in accuracy metrics is

particularly high. This provides some indication that for complex constructs like populism,

the stability of LMs may be particularly poor. By extension, this makes any analysis using

LMs to classify this kind of data particularly vulnerable to failed replication.

5.3 Temperature and Model Settings Do Not Solve the Problem

One objection to these first experiments is that perhaps we did not properly specify model

parameters. In particular, we see routine claims that setting a low or zero “temperature”

for a model, and using nucleus sampling (“top p”) will (fully) mitigate concerns. It is true

that these parameters control the “creativity” of the model by weighting the acceptable

probability threshold for the next token in a sequence. For both parameters, “0” represents

the lowest level of “creativity” and therefore the most “deterministic” setting for the model.
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But as we will see, this does not generally reduce variance to zero.

A second objection is that we did not properly specify the model date we are using.

This critique begins by noting that developers like OpenAI periodically update their models

with tweaks and other cosmetic changes and this, inevitably, leads to (small) changes in

performance. Thus, if one specifies exactly which model—i.e. what dated version (e.g.,

gpt-4o-2024-08-06)—one used, future researchers can adopt the same model to achieve

(more) similar results. From here, replication concerns are mitigated. Unfortunately this is

also false.

In order to test whether adapting these parameters makes the models deterministic, we

repeat the labelling process described above for the Manifestos, Protests, and Populism

outcomes. We do so twenty times for each outcome. We first set the temperature to 0,

then set the top p to 0 as well. We use the (at the time of writing) most up-to-date OpenAI

models to reflect current practice. We also repeat this process for four (at the time of writing)

of the most commonly used and powerful open-source models. For the OpenAI models, we

specify the precise dated version of the model; for the open-source models we specify the

precise version of the model we use.10

We display the results for the OpenAI models in Figure 3. We see that setting the

temperature to 0 does not render the model deterministic. Specifically, the correlations

between runs are not necessarily zero: we see this from the fact that the triangular matrices

are not completely blacked out (depending on task). The density plots at the top of each

column summarize this fact: they are typically not spiked at zero, but vary from, say, 0.8

to 1.00. In some cases, for example the information retrieval problem for the participation

task, we do see perfect replication between runs. But we would make the point that this is

itself unpredictable, insofar as it is not obvious when this will be true of a given problem. In

SI E we extend this analysis to setting both temperature and top P to 0. For tasks where the

between run correlation is less than one, this problem continues for proprietary models there

10To do so, we download the models locally using Ollama and specify the precise model version for each
(i.e., the size of the model and version names instead of using the model with the “:latest” suffix.).
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Figure 3: A-E: Between-run correlation coefficients and coefficient distributions for each of
the Manifestos, Protests and Populism outcomes for gpt-40-2024-08-06 with temperature
set to 0; F-J: Between-run correlation coefficients and coefficient distributions for each of
the Manifestos, Protests and Populism outcomes for gpt-40-mini-2024-07-18 with tem-
perature set to 0.

too. It is not an issue for versionable, open source models, however: setting the temperature

to 0 renders replication perfect between runs.

Finally, in Figure 4 we look at the implied trade-off when specifying model temperature.

We do this for the two proprietary models we mentioned. We label each outcome over nine

different temperatures ranging from 0 to 2. For each temperature, we label the same data

ten times. We then calculate the F1 scores for each run. As expected, the variance in F1

scores increases at higher temperatures: i.e. setting a zero temperature may mean missing

some performance (depending on the run). That said, the performance loss is not vast and

risk aversion suggests setting temperature to zero as the least worst option when using a

proprietary model.

23



Figure 4: A-E: Scatter plot of F1 scores versus temperature for each outcome (points jit-
tered) ; F-J: Temperature against range of F1 scores for each outcome (line represents
LOESS best fit). Note that higher temperatures allow for potentially better and worse cod-
ing performance.

5.4 Downstream Consequences I: Bor & Petersen

We next show that the observed variance in LMs “matters” in a broad sense. Here, our

setup was to replicate a study that used human workers to code a relatively unambiguous

variable—except that we used LMs in the place of humans. Specifically, we used data

from Studies 6 and 7 of Bor and Petersen (2022). Our rationale for carrying out this (and

subsequent) replications is simple: many have claimed we may now be able to use LMs in the

place of crowdworkers (Gilardi et al., 2023; Rathje et al., 2024; Ziems et al., 2024). Typically,

these papers do demonstrate that LMs achieve human-level accuracy on given tasks. What

we do not know is how, given the known stochasticity of models, the observed variation in

model outputs might affect downstream inferences. We give more details in SI F, but the

key variable of interest in our first replication is the hostility of respondent comments on

social media as predicted by several personality traits of the authors.

We follow the original crowdwork protocol as closely as possible with various LMs we

had available—5 different OpenAI models in our case (GPT3.5 Turbo, 4, 4o, 4o mini, o1

mini). We then estimated the same regressions as in the original paper, but this time using

the mean LM scores of comment hostility—instead of crowdworker codings—for each run.
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And we did this for each LM and each individual iteration. The results are in Figure 5. At

the top (panel A) we see that while the crowd and the LMs agree in an overall sense (the

loess lines have positive slope), the correlation is certainly not 1. Unsurprisingly, this has

consequences for the estimated coefficients.

Figure 5: A: Correlation between crowd mean and LM means of hostility ratings; B: Dis-
tribution of main independent variable coefficients across individual iterations of the same
regression across LMs; C: P-values of coefficients for each iteration of each regression across
LMs. The vertical line in Panel B indicates the original regression coefficient; the vertical
line in Panel C indicates the original P-value.

We observe that for the key independent variables of interest (with the exception of

aggression), all variables are now not statistically significant for the majority of regression

estimates (in panel C, we see that the p-values have all moved right away from 0). This is,

primarily, an issue of variance. But we can say more. First, as researchers update to newer

and newer models, panel B (middle) makes clear that there is no reason for them to expect

that effect sizes from earlier models will be preserved—e.g. GPT3.5 produces an entirely
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distinct set of coefficients as compared to the other models. We can see this by noting that

the implied sampling distributions (the densities in Panel B) are centered somewhere other

than the original work’s β̂s (the straight dotted lines). It is hard to know why this is true in

a deep sense. Second, higher variance codings across runs yield higher variance coefficient

estimates. We would expect this, but the converse is therefore (helpfully) true: more stable

models produce more stable coefficients. Finally and unfortunately, there is not an obvious

relationship between accuracy, variance and stability across models. That is, two different

LMs can be similarly accurate overall (per panel A, they can have similar correlations with

humans and each other), but yield very different coefficient estimates. This is generally bad

news for replication efforts—and predicting how replicable a given task using LMs will be.

5.5 Downstream Consequences II: Hopkins et al

We conducted a second replication with LMs for Hopkins et al. (2024). The original data for

that paper is from Matias et al. (2021), and includes thousands of news headlines. For each

news story, the data contain different versions of the headline, which were A/B tested on

the Upworthy website. In Hopkins et al. (2024), the authors test if news headlines that cued

identity groups were more likely to garner engagement (clicks). They hire crowdworkers to

label whether or not a headline references a particular identity group (gender, race, religion,

political). There are three outcomes in the data: clicks on a level scale, clicks logged, and

clicks per 1000 impressions. These are referred to in the plot as “level,” “log,” and “ratio.”

To replicate this with LMs, we used three commonly-used OpenAI language models:

GPT3.5 Turbo, 4o, and 4o mini. We relabelled the Gender and Race coefficients, which were

originally coded by crowdworkers.11 For each model, we code the full human-labelled data

(∼6.6k rows) 10 times.

We then substituted in our LM labels for the original human labels in the regressions

estimated in the original article. Thus, for each model, we have ten versions of the LM labels

11In the original article, the results of these analyses are on the left hand side of Table 3.
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and ten regression coefficients. We provide full model specifications in SI G. We plot the

results in Figure 6.
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Figure 6: A: Correlation between crowd labels and LM labels ; B: Distribution of main LM-
coded independent variable coefficients across individual iterations of the same regression
across LMs; C: P-values of coefficients for each iteration of each regression across LMs. The
vertical line in Panel B indicates the original regression coefficient; the vertical line in Panel
C indicates the original P-value.

We see first (panel A, top) that the gender labels produced by the LMs differ substantially

from the original (human) labels: that is, there are off-diagonal masses in the plot. In Panel

B, we see downstream results of this: across gpt-4o-mini and gpt-3.5, in particular, for the

Gender coefficients there is an obvious gap between the distributions. Further, all of the

Gender coefficients become significant (the dots in Panel C are now very close to zero),

whereas none of them were so in the original article (the vertical bars). Therefore, the

different LM codings not only produces difference conclusions from the original article but
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also from each other when comparing model versions.

In contrast, the correlation is much better for the model Race coding as compared to the

original, and there is less between version variation in outcome coefficient and significance.

However, there are two problems with this. First, despite this closer relationship to human

coding, all of the Race coefficients are insignificant whereas one of them was significant in

the original article. Second, it is unclear why the model performance varies for Race versus

Gender, meaning it is difficult to know how replicable the task is ex ante.

To summarize this section: language model variability has material downstream conse-

quences. It is not simply that LM codings differ from humans in an average accuracy sense;

it is that they differ substantially across models. This implies that unless researchers have

access to the same systems at the same time as the original researcher, they will struggle to

replicate the earlier substantive results.

5.6 Usage Case Study: Gemini

Separate to performance variance, replication is obviously dependent on the ability to actu-

ally use the (same) model over time. Since Gemini was still being rolled out at the beginning

of this study—and changes on the back-end were still being made—it is an ideal case for

recording difficulties in employing a commercial LM. In SI H we give comments on our

struggles with this model, its updates and other changes—including whole versions being

suddenly retired. Our ultimate conclusion is that state-of-the-art products are extremely

fragile in replication terms and subject to forces well beyond a given researcher’s power.

At best, accessing the exact same form of the model for replication may be challenging; at

worst, they may simply cease to exist overnight.
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6 Advice to Practitioners

Articulating the general problems inherent in LM replication is helpful, in our view. But

what practical steps follow? Here are our suggestions, from most abstract to most precise:

1. Take replication seriously, impose standards on ourselves and others. Our

most basic call is that researchers and their institutions—like journals—should be

aware of the replication problems we discuss above. This issue is unlikely to ‘go away’

(we think it will get worse), and needs urgent action. Readers, referees and editors

might consider down-weighting the contribution of papers that rely on routines that

are unlikely to replicate—as they do currently for non-LM work.

2. Be wary of false analogies: LMs are not just like crowdsourcing. LMs are

like crowd workers in that they produce answers to questions and performs tasks, and

a precise explanation of the mapping from machine (worker) to code may never be

knowable. But LMs show more variance than crowdworkers do, and are more fragile—

specific models can simply cease to exist. What is more, LMs are unpredictable: their

failure points routinely surprise users in a way that is untrue of online workers and their

capabilities. Advice to specify prompts more exactly or to experiment until responses

are stable is ambiguous and ad hoc: it mostly restates the problems we are noting.

3. Consider open models that allow offline versioning. We found that, uniquely,

our open-weights implementations were replicable to a high standard if that standard is

low variance. That is, if the goal is something approaching the Deterministic ‘code and

data’ replication vision above, then local, versioned models are the way to go. These

may not deliver top of the line performance (e.g. accuracy) but should be checked

as a first resort. We acknowledge that an open LM may not be “transparent” in the

sense that it is “easy” to understand how it produces predictions—even if one has the

weights. But it is obviously a boon to replication insofar as being able to verify that

the original researcher did indeed see the results they reported. What is more, recent
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research into LM interpretability points the way toward more model understanding

and control but only if weights are accessible (Cunningham et al., 2023).

4. Justify closed models if they must be used. Researchers may use closed models

for various (claimed) performance reasons. But this sacrifices replicability—sometimes

completely. This trade-off should be acknowledged explicitly and justified (see Palmer

et al., 2024).

5. Work in an “anti-fragile” way. If you must use closed models, think carefully about

ways to reduce the variances in their outputs. Setting parameters like temperatures

and top p may help, but this is no panacea, and in our view has led to some actively

misleading claims. Similarly prompt stability checks (e.g. Barrie et al., 2024) can be

useful, though subject to our warnings about the implications of this process for closed

models above.

6. Replicate Your Work. Researchers should run their own routines multiple times,

preferably over multiple days or weeks or months—or whatever a reasonable period of

stability should be for such models. They should report the variance they observe and

comment on how “replicable” this suggests their efforts actually are.

7 Discussion

LMs are an extraordinary boon to the study of politics, but we contend they may also be

a threat to broader notions of “science” in the discipline. Our specific concern is the lack

of attention paid thus far to basic notions of “replication” in their deployment. Researchers

typically offer, at best, bare minimum details on what they did to produce the results they

are publishing. Commensurate with this, journals require very little supporting information.

This is in stark contrast to a broad recognition that replication matters in a deep sense for

the integrity of what we do in the discipline, and increasingly stringent requirements for
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publishing work that meets these standards.

We argue first that part of the problem is theory. Practitioners lack a firm sense of how

they should think about replication in the LM arena. Obviously, this shoud not become an

excuse to not hold ourselves to the same standards as we would for ‘usual practice’ in terms

of code and/or data. Related, researchers make analogies to procedures like crowdsourcing,

noting that such data generating processes may also have “black box” elements. We are

skeptical. Specifically, LM work has some weaknesses of both “traditional” code-plus-data

replication (it is fragile) and crowdsourcing (it is high variance). No temperature setting or

well-written model specifications resolves the fundamental issue.

We then turned to an empirical examination of the problem. We set about mimicking

replication attempts by comparing multiple tasks over multiple runs over multiple (long)

time periods—now up to 9 months—using multiple LMs. We found that LMs can be very

hard to work with—our case study of Gemini suggested that even re-running simple routines

is impossible. More broadly, LMs exhibit high variance. That is not to say that LMs are

inaccurate. It is to say that the demonstrated variance in their outputs means they will

likely lead to less “replicable” research than the alternative approaches many claim they are

ready to replace. Indeed, when we do replace crowd workers with LMs, we demonstrate not

only that they produce outputs very different from the original but that the choice of model

will lead to different downstream inferences when these labels are used in e.g., a regression

context.

Clearly we need more work on replication. We have shown that it is simply not enough—

and may be actively misleading—to just report what prompt was used for one particular run

of the LM. We need better, clearer common standards and practices. We leave such matters

for future work.
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A Prompt Design

In the below, we first detail the prompt designs and code used for each of our LMs for all of
the analyses we describe in the main article.

Readers will note that, for the protest task, we classified more variables than we ended
up displaying for our main results in the manuscript. For reasons of parsimony, we chose
the two outcome variables that we did (participation and form) as these are among the
most commonly coded in the literature. The full code for each prompt setup (including any
additional libraries e.g., langchain or pydantic for forcing structured outputs) will also be
included in replication materials.

• Manifestos, Protests, and Populism OpenAI Analyses: The prompts are avail-
able at: https://tinyurl.com/mv7cx6y3.

• Manifestos, Protests, and Populism Gemini Analyses: The prompts are avail-
able at: https://tinyurl.com/4eev5su4.

• Manifestos, Protests, and Populism Llama Analyses: The prompts are available
at: https://tinyurl.com/25um4hcd.

• Manifestos, Protests, and Populism Ollama Temperature 0 Analyses: The
prompts are available at: https://tinyurl.com/47w97rax.

• Bor and Petersen (2022) Labelling for Downstream Analysis: The prompts
are available at: https://tinyurl.com/52snxkuv.

• Hopkins et al. (2024) Labelling for Downstream Analysis: The prompts are
available at: https://tinyurl.com/4j5t54r7.
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https://docs.google.com/document/d/e/2PACX-1vTi7VQY53tQVfbVYjE6FPRSLz_2BPFiJ9iVybE_XjLzFlfmsjnVw-XwRSKBrgSLJwUCcbD_p_EZi-AV/pub
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B Crowdworker apps

(a) Protest Crowd Screen 1 (b) Manifesto Crowd Screen 1

(c) Protest Crowd Screen 2 (d) Manifesto Crowd Screen 2

(e) Protest Crowd Screen 3 (f) Manifesto Crowd Screen 3

Figure 7: Combined screens for Manifesto and Protest crowdworker apps.
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C Additional Main Experiment Figures

Figure 8: Manifestos

Figure 9: Manifestos Crowd
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Figure 10: Protests

Figure 11: Protests Crowd
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Figure 12: Populism

C.1 Descriptive Main Experiment Results

For the manifestos, we see that accuracy is higher for the first task (differentiating between
economic and social text) than the second task (estimating the ideological outlook of that
text) across both the LM-coded and human-coded rounds. The OpenAI-coded data gives the
highest accuracy scores overall and is the only LM to clearly outperform crowdworkers for the
first task and match the crowdworkers for the second. Most notably, we see that the overall
observed variance in these scores across rounds is markedly lower for the crowdworkers than
it is for Gemini and similar to the other LMs.

For the protests data, we see a similar picture. Here, Gemini performs markedly better
than other LMs in some rounds at classifying participation—and about as well as crowd-
workers in this tasks for these rounds. But we also see that the variance of these metrics
is substantially higher than for the crowdworkers. Due to poor performance of the OpenAI
model in one round, the overall variance of these results for estimating participation is also
substantially higher than the crowd. For the type of protest outcome, our crowdworkers
perform generally more poorly than our LMs—but they do so a lot more consistently as the
variance for the LMs is even higher for this outcome.

Finally, for our populism outcome that we did not ask crowdworkers to classify, we see
that for the LMs—and Gemini in particular—the variance in accuracy metrics is particularly
high. This may be because this is a difficult construct to annotate.

These differences in variance can be further broken down by model performance and
model choice. Consider the task where coders are asked to determine the ideology of each
manifesto (from left to right). These values can be meaningfully ordered. Since we gave both
the human coders and the LMs a static sample each month, and therefore have repeated
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coding of the same manifestos, we can look at how those codings vary month over month.12

For OpenAI the ideology codings varied the most for manifestos with the ground truth of
somewhat liberal, very liberal, and neither (in descending order). In contrast, the highest
coding variance from crowdworkers came from manifestos that were very left or very right.
The latter can be perhaps understood as crowdworkers struggling to commit to an extreme
position (much like asking if you “strongly agree”). But we do not know whether OpenAI
has trouble recognizing liberal ideology, or if the increased variance is random. In that sense,
while there is some variance in both cases, using crowdworkers produces more predictable
errors in coding.

Additionally, while OpenAI was consistently the best performer of the LMs in terms
of the employed metrics, the variance of these outcomes is often comparable to the worst
performer—Llama. There are two items of note here. First, averaged across all runs as
they are in SI D Table 3, OpenAI consistently has the lowest average variation in precision
of the LMs (with the partial exception of the estimated participation protest outcome due
to poor performance in one round). However, Llama often outperforms (by a significant
magnitude) or is close to OpenAI in terms of recall. This suggests different models have
different idiosyncratic errors; for instance Llama has a much lower variance in recall for the
populism task and it also codes many more observations as ‘1’ than OpenAI (with 1s being
a relatively low occurrence in the data). Second, comparing the static and varying monthly
runs, the variance for OpenAI and Gemini look similar. However, for Llama the static runs
have a variance of (or close to) 0 for each performance metric and task. That is, using a
model which is stored locally and re-coding the same data produces nearly identical coding
results. This is much closer to the idea of true deterministic replication we discussed above.

12Calculated as the variance for each given manifesto code averaged across manifestos.

7



D Additional Main Experiment Tables

Source Outcome Average f1 Average precision Average recall Range f1 Range precision Range recall Average Range

openai Economic vs. Social 0.440797 0.681515 0.506111 0.099713 0.172800 0.051000 0.107838
crowd Economic vs. Social 0.317561 0.346444 0.307620 0.058521 0.079503 0.040288 0.059438
llama Economic vs. Social 0.331592 0.410038 0.342056 0.048153 0.098103 0.046000 0.064086
gemini Economic vs. Social 0.420631 0.480698 0.455556 0.159649 0.154621 0.059000 0.124423
llama Ideology score 0.244451 0.329454 0.278778 0.050865 0.135856 0.041000 0.075907
gemini Ideology score 0.283910 0.359867 0.339778 0.104868 0.099771 0.228000 0.144213
openai Ideology score 0.277118 0.537047 0.328778 0.166208 0.178225 0.156000 0.166811
crowd Ideology score 0.348220 0.394443 0.329679 0.103502 0.108474 0.105275 0.105750
gemini Estimated participation 0.586689 0.656897 0.611222 0.274830 0.251467 0.228000 0.251432
crowd Estimated participation 0.552099 0.613225 0.561226 0.073708 0.074146 0.052039 0.066631
openai Estimated participation 0.534509 0.587726 0.542778 0.508077 0.558869 0.482000 0.516315
llama Estimated participation 0.232261 0.168070 0.376333 0.049277 0.042248 0.048000 0.046508
openai Type of protest 0.408847 0.536924 0.348667 0.200983 0.107293 0.258000 0.188759
llama Type of protest 0.033296 0.126492 0.037444 0.021138 0.274257 0.020000 0.105132
gemini Type of protest 0.289353 0.479110 0.273111 0.389162 0.452455 0.368000 0.403206
crowd Type of protest 0.069302 0.051848 0.117474 0.027947 0.023343 0.041407 0.030899
gemini Populism binary 0.710679 0.906947 0.657826 0.362043 0.198569 0.444444 0.335019
llama Populism binary 0.700811 0.912309 0.620856 0.065183 0.021877 0.077768 0.054943
openai Populism binary 0.894485 0.939877 0.873132 0.047812 0.072713 0.027562 0.049362

Table 2: Aggregated Results Table
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Table 3: Variance Table

Source Outcome f1 precision recall Average Variance

openai Economic vs. Social 0.000164 0.000366 0.000179 0.000236
crowd Economic vs. Social 0.000243 0.000554 0.000179 0.000325
llama Economic vs. Social 0.000123 0.000395 0.000132 0.000217
gemini Economic vs. Social 0.001946 0.001466 0.000239 0.001217
llama Ideology score 0.000162 0.000715 0.000124 0.000334
gemini Ideology score 0.000796 0.000705 0.008949 0.003483
openai Ideology score 0.000131 0.000540 0.000158 0.000276
crowd Ideology score 0.001128 0.001236 0.001290 0.001218
gemini Estimated participation 0.009731 0.007416 0.007096 0.008081
crowd Estimated participation 0.000768 0.000666 0.000363 0.000599
openai Estimated participation 0.010922 0.013925 0.010277 0.011708
llama Estimated participation 0.000289 0.000223 0.000227 0.000246
openai Type of protest 0.003099 0.000646 0.005892 0.003212
llama Type of protest 0.000029 0.003822 0.000034 0.001295
gemini Type of protest 0.011809 0.014627 0.011576 0.012671
crowd Type of protest 0.000085 0.000073 0.000126 0.000095
gemini Populism binary 0.010816 0.001876 0.022521 0.011738
llama Populism binary 0.000303 0.000029 0.000423 0.000252
openai Populism binary 0.000112 0.000283 0.000033 0.000142
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E Temperature and Top P Tests

Figure 13: A-E: Proprietary models, between-run correlation coefficients and coeffi-
cient distributions for each of the Manifestos, Protests and Populism outcomes for
gpt-40-2024-08-06 with temperature and top P set to 0 ; F-J: Between-run correlation
coefficients and coefficient distributions for each of the Manifestos, Protests and Populism
outcomes for gpt-40-mini-2024-07-18 with temperature and top P set to 0.
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(a) deepseek-r1:8b

(b) llama3.2:3b

(c) gemma3:4b

(d) mistral:7b

Figure 14: A-E: Open models, between-run correlation coefficients for each of the Manifestos,
Protests and Populism outcomes with temperature set to 0.
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F Downstream Effects: Bor & Petersen ‘replication’

details

Here our basic setup was to replicate an analysis which used human workers, substituting
LM coding for their efforts. Our requirement was that the human coded data referred to a
construct that has a relatively unambiguous definition. This is important because it ensures
that the task is straightforward, and that we can believe the original (human) labels are
accurate as a baseline.

We used data from Studies 6 and 7 of Bor and Petersen (2022). Those authors inves-
tigate whether hostility observed in online platforms, such as social media, is a function
of the medium or whether individuals with pre-existing hostile traits are more inclined to
exhibit hostility online. Specifically, the paper aims to answer the question (quoted from the
Appendix): “Do individuals with aggressive personality traits (as opposed to those without
such traits) produce more hostile comments?”

To explore this, the authors:

1. Collect a set of Facebook comments related to immigration.

2. Ask participants to write a post in response to these comments.

3. Obtain crowd-sourced ratings for the hostility of each respondent’s comment (on a
0-100 scale).

Subsequently, the mean hostility ratings of respondent comments, as determined by the
crowd raters, are regressed on three personality measures known to be associated with hos-
tility: status-driven risk-taking, difficulties in emotion regulation, and trait aggression. Ad-
ditionally, the model includes the hostility of the original comment to which the respondent
replied, alongside several other covariates of interest. The authors find significant associa-
tions between all three personality traits as well the hostility of the original comment (i.e.,
people respond in a more hostile way to comments that are originally hostile).

The mean hostility ratings of respondent comments, as determined by crowd raters, are
regressed on three personality measures known to be associated with hostility—status-driven
risk-taking, difficulties in emotion regulation, and trait aggression—alongside the hostility of
the original comment and several covariates. Here, i indexes respondents, and the authors
include random intercepts utarget(i) and uposition(i) for the original comment (target) and its
position, respectively.

The regressions then take the following functional form:

Status-Driven Risk-Taking (SDRT) Regression

crowd.meani = β0 + β1 sdrti + β2 agei + β3 femalei

+ β4 partyidi + β5 higheredi + utarget(i) + uposition(i) + ϵi.
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Difficulties in Emotion Regulation (DERS) Regression

crowd.meani = β0 + β1 dersi + β2 agei + β3 femalei

+ β4 partyidi + β5 higheredi + utarget(i) + uposition(i) + ϵi.

Trait Aggression Regression

crowd.meani = β0 + β1 aggressioni + β2 agei + β3 femalei

+ β4 partyidi + β5 higheredi + utarget(i) + uposition(i) + ϵi.

Hostility of Original Comment Regression

crowd.meani = β0 + β1 hostilei + β2 agei + β3 femalei

+ β4 partyidi + β5 higheredi + utarget(i) + uposition(i) + ϵi.

We use a set of LMs to annotate the comments in the study. Specifically, for each
comment that had, for example, 7 crowd annotators, we provided 7 annotations using the
LM; if it had 9 crowd annotations, we annotated 9 times, and so on. This procedure was
repeated 30 times for each LM. In other words, we “replicated” the entire crowd annotation
process 30 times for each LM. This process was conducted across 5 different OpenAI language
models, resulting in a total of 1,174,750 annotations. Due to mounting costs, we conducted
only 6 rounds with GPT-4.

We then estimated the same regressions as in the original paper, but this time using the
mean LM scores for each run. And we did this for each LM and each individual iteration.
Finally, we plotted the distribution of coefficients for each of the three personality traits, as
well as the hostility level of the original comment in Figure 5.

We observe that for the key independent variables of interest (with the exception of
aggression), all variables are now not statistically significant for the majority of regression
estimates. Indeed, the earlier GPT-3.5 model is the only LM that retains statistical sig-
nificance for some of the runs and delivers estimates relatively close to the originals for
status-driven risk-taking, difficulties in emotion regulation, and original comment hostil-
ity. This is despite OpenAI explicitly advising users: “As of July 2024, gpt-4o-mini should
be used in place of gpt-3.5-turbo, as it is cheaper, more capable, multimodal, and just as
fast. gpt-3.5-turbo is still available for use in the API.”13

G Downstream Effects: Hopkins et a. ‘replication’ de-

tails

Here, we relabelled the human-labelled Upworthy news headlines provided by Matias et al.
(2021) and used in Hopkins et al. (2024) to test the hypothesis that headlines cueing identity
groups will gain more traction (clicks) than headlines about the same news story that do
not cue identity groups.

In the original article, the authors estimate three regression that take the following form:

13Source: https://platform.openai.com/docs/models/o1. Last visited: October 31, 2024.
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Click Level Regression

clicksi = β0 + β1 impressionsi + β2RACEETHNICITYi + β3GENDERi

+ β4RELIGIONi + β5 POLITICALi + αj(i) + γk(i) + ϵi.

Click Log-Level Regression

clicks logi = β0 + β1 impressions logi + β2RACEETHNICITYi + β3GENDERi

+ β4RELIGIONi + β5 POLITICALi + αj(i) + γk(i) + ϵi.

Click Ratio Regression

clicks per 1000 impressionsi = β0 + β1RACEETHNICITYi + β2GENDERi

+ β3RELIGIONi + β4 POLITICALi + αj(i) + γk(i) + ϵi.

, where i index observations. The story fixed effects are denoted by αj(i) and γk(i),
respectively, where j(i) and k(i) indicate that each observation i belongs to a particular
clickability test j and eyecatcher k. What the authors refer to as the click “level” is simply
the number of clicks. The second operationalization is the logged number of clicks; and the
third is the logged number of clicks per 1,000 impressions.

We choose to relabel two of the key independent variables of interest: RACEETHNICITY
and GENDER. For all other variables, we use the original human labels. We do so by
replicating the original codebook instructions as closely as possible with our prompt setup
(see: Section A). We relabel all 6,633 headlines ten times for each GPT, resulting in 198,990
labels.

We plot the bivariate correlation between the original human labels, the distribution of
the estimated coefficients, and the spread of the p-values for the key independent variables
of interest in Figure 6. Similar to the findings in Section F, we find considerable between-
and within-model variance in the estimated coefficients downstream of the LM-annotated
independent variables of interest.

H Gemini case study

We began running replications for our three data sets in April 2024. In June 2024, Gemini
pushed a number of updates as well as introduced a payment tier; customers were notified
about the latter but not the former. Consequently, the code used for the first two months
of this project is currently non-operational. The difficulties associated with this may prove
instructive both for how to think about replication and initial LM choice.

The most notable effect of this change is that the initial (day 1 of our study) model used,
Gemini 1.0-pro, no longer functioned. It literally could not be re-run for function calling.
This is an extreme case of “fragility” in terms of our typology above: it is not (simply) a
matter of needing to use an outdated or archived model to replicate, but of actually using a
different machine altogether. The model that can accommodate the needed prompt design
is now Gemini 1.5-pro (at a higher pricing tier).
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Second, once the model itself was updated, the syntax of the code also needed to change.
The previous versions of Gemini used the python package glm to enable function calling, with
associated functions within the LM prompts. The updated Gemini uses a syntax similar,
but not identical, to OpenAI’s GPT-414 and a different set of packages. In short: no part of
the original set up or prompt code would replicate after this back-end change, despite the
same models being nominally operational. In the sense of Benureau and Rougier (2018),
that original code is not re-runnable, and certainly not repeatable or replicable.

We have several observations:

1. Simply maintaining a given model is not sufficient to ensure that code will produce
the same (plus error) output or indeed be possible to run at all. Rather, significant
changes can be made to models and their usage while still under the same name. This
is different to something like updates to R packages, where the new release has a new
number (at least).

2. While all commercial LMs require some form of authentication to use, usually in the
form of an API key, Gemini added additional layers of verification with the update,
only some of which were included in the model documentation.15 This is another oft
neglected aspect of replication in which (unannounced) changes on the back-end require
additional effort by a user. That is, it is not simply a matter of carefully checking which
model the previous researcher used and accessing that one: there are extra steps to
take.

3. Many changes are not even documented. In fact, when the Gemini models were initially
updated, the documentation examples did not yet run on the published models. The
documentation was both missing some pieces and ahead of the actual released code on
others.

4. Separate to the statistical operations, there are business model issues that are confus-
ing and troubling. For instance, despite claiming to allow 360 requests per minute on
the paid tier, submitting only 12 requests a minute still generates “quota exceeded”
errors. This is frustrating but also opens an additional complication of using commer-
cial LMs—in the case of Gemini, users can only access support services if they buy
into a subscription service. While this might seem minor, given the need to be able
to adapt code and trouble-shoot problems in order to replicate this further limits who
can replicate code or apply studied methods.

14There are some notable exceptions, such as it will not accept integers as forced outputs only strings
15Some requirements were discovered through error messages but not detailed on set-up pages
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