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Abstract

Legislative voting records are an important source of information about legisla-
tor preferences, intra-party cohesiveness, and the divisiveness of various policy issues.
Standard methods of analyzing a legislative voting record tend to have serious draw-
backs when applied to legislatures, such as the UK House of Commons, that feature
highly disciplined parties, strategic voting, and large amounts of missing data. We
present a method (based on a Dirichlet process mixture model) for analyzing such
voting records that does not suffer from these same problems. Our method is model-
based and thus allows one to make probability statements about quantities of interest.
It allows one to estimate the number of voting blocs within a party or any other group
of MPs. Finally, it can be used as both a predictive model and an exploratory model.
We illustrate these points through an application of the method to the voting records
of Labour Party MPs in the 1997-2001 session of the UK House of Commons.
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1 Introduction

Scholars of legislative politics frequently rely on legislative voting records to make in-

ferences about the policy preferences of legislators (Poole and Rosenthal, 1985, 1991, 1997;

Heckman and Snyder, 1997; Clinton et al., 2004), the types of political issues that drive

political conflict (Poole and Rosenthal, 1997; Cowley and Garry, 1998), the cohesiveness

of parties (Hix, 2002; Rosenthal and Voeten, 2004; Desposato, 2003) and the existence of

intra-party factions (Cowley, 2002; Rosenthal and Voeten, 2004) among other things. In

general, the methods used by political scientists to analyze such voting data are best applied

to voting records from legislatures, such as the US Senate and House of Representatives,

that feature relatively weak parties composed of fairly autonomous legislators (Spirling and

McLean, 2007). The reason for this is that the usual models rely on a number of struc-

tural assumptions that are typically not even approximately met in parliamentary systems

with highly disciplined parties organized around the dichotomy between government and

opposition. In what follows, we present a nonparametric model that does perform well (for

both exploratory data analysis and predictive inference) when applied to voting data from

a parliament with extremely disciplined parties.

We apply this model to parliamentary votes from the UK House of Commons during the

first Blair government (1997-2001), which has been of specific interest to political scientists

for several reasons—not least the fact that it represented the first change in party control

of British politics for over 18 years. Moreover, as the first ‘New’ Labour government it was

seemingly an uneasy alliance: on the one hand was a leadership that had actively abandoned

the tenants of socialist policy-making and that had received a landslide mandate to rule. On

the other was a historically and openly recalcitrant tranche of ‘Old’ Labour legislators,

dismissive of the modernizing project in its entirety. There was thus much speculation that

explosive divisions and factions would soon emerge to enervate the newly elected Prime
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Minister.

Our primary object of interest is the identification and interpretation of blocs of MPs

who have similar expected voting profiles. While much has been written on intra-party

factions in the UK (Cowley, 2002; Shaw, 1988; Berrington and Hague, 1998; Spirling and

McLean, 2007) most of this work relies on relatively crude methods of data analysis. By

taking a more sophisticated model-based approach we hope to sharpen existing insights into

intra-party divisions within the UK Labour Party. In addition, we hope to provide a set of

tools that can be usefully applied to parliamentary voting more generally.

This paper is organized as follows. In the next section we briefly discuss voting in the

UK House of Commons. In Section 3 we discuss previous approaches and their shortcomings

when applied to UK roll call data. In Section 4 we describe our nonparametric model.

Section 5 presents results from our analysis of the 1997-2001 UK data, and comments on

how this new approach might contribute to recent substantive debates in political science.

2 Divisions in the UK House of Commons

The majoritarian nature of the British electoral system ensures that the Prime Minister

is the leader of the largest party by vote share, and will hold a majority of seats in Parliament

(Adonis, 1990, p. 21–25). The executive—the cabinet, headed by the Prime Minister—is

fused with the legislature in that it essentially controls the business of the House of Commons.

This business refers to the proposing and passing of legislation, and also to the timetabling

of the debate on these matters. Formal (and informal) rules of parliament enable influence

by the non-governmental parties throughout the parliamentary session; these are essentially

limited to the opportunity to debate and counter-propose legislation.

The largest parliamentary party not in government forms the “Official Opposition.” They

are joined on the opposition benches by all other (smaller) parties which are also outside of

the government. Though technically incorrect, we use the term “opposition” as a catch-all
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for the non-government parties here. As its moniker suggests, the opposition’s de facto role

is to oppose the government’s legislation. Since it normally lacks a unified political agenda

(perhaps other than to defeat the government), the opposition’s constituent parts may give

dissimilar, even conflicting, reasons for their decision to vote (typically) contrarily to the

government’s agenda.

Congruent with this adversarial legislative principle, a member of parliament (MP) relies

on party patronage for career advancement, and their election at the constituency level is

almost solely a product of their party label (and that party’s current fortunes) rather than

their personal appeal to voters (Jennings, 1969). Almost all voters base their localized ballot

box decision on the party labels of those competing: constituent service as a foundation of

(re)election—in the US sense of pork-barreling localized benefits—is absent.

By and large then, roll calls in the United Kingdom parliament amount to either sup-

porting or opposing the government’s proposals. The parties are highly cohesive in voting:

the great majority (approximately 99 percent) of divisions are whipped, insofar as the re-

spective party leaderships state a party line which MPs are expected (and have incentives)

to toe. Rebeling—in the sense of voting against the official party line—scuppers promotion

prospects and leads to demotion where applicable. If rebels are particularly reckless, the

whip may be withdrawn (see Silk, 1987, p. 46-48). This latter punishment is the equivalent

of expulsion from the parliamentary party, and usually prohibits the opportunity to run for

that party at the next (and subsequent) general election(s). Contrast this situation with

the US Congress where Representatives and Senators from different parties form shifting

coalitions from bill to bill.

Given this logic, it should be clear that a government party MP rebels when she votes

against the explicit wishes of the government, and with—in terms of the similarity of the

“Aye” or “No” division choice—the opposition parties. In particular, notice that these

rebels need not agree substantively with any of the opposition parties’ positions on the bill:
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for example, the government party rebels may feel some government bill does not allocate

sufficient funds to public spending (“not enough!”), whilst others (particularly amongst the

opposition) hope to defeat the bill on the converse basis that the proposal is profligate (“too

much!”). Note that this logic is clearly inconsistent with the assumption of sincere policy-

based voting that is at the heart of standard statistical models (Poole and Rosenthal, 1985,

1991, 1997; Heckman and Snyder, 1997; Clinton et al., 2004) of legislative voting. We now

clarify this point before developing a different modeling strategy.

3 Previous Literature and Approaches

Early analysis of roll calls includes the foundational work of Rice (1928) who suggested a

straightforward and well-known index, here denoted r, which attempts to capture the unity

of a party on any particular vote. That is,

r = 100|p − (1 − p)|

where p is the proportion of the party voting ‘aye’ on the roll call. When scholarly interest

centers on aggregate party voting, the index is very helpful: it allows us, for example, to

compare the Labour party over the course of the parliament (mean r = 96.99, std dev=

11.65) to the main Conservative opposition (mean r = 96.19, std dev=14.54). However, it

tells us little about the number or membership of intra-party blocs (we will use ‘groups’

interchangeably in what follows) in the House of Commons—which is the focus here. This

critique applies equally to related metrics that consider the number of divisions on which

some (arbitrary) proportion of the party votes similarly (see, e.g., Lowell, 1901).

3.1 Scaling and Projecting

Contemporary analysis of roll calls typically proceeds via an item-response approach

similar to that implemented in the education testing literature as the one, two or three
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parameter item response theory model (see Rasch, 1961; Birnbaum, 1968; Lord, 1980). In

this setup, ‘test-takers’ are the legislators and the ‘items’ are the bills to be voted on:

rather than ‘ability’, we seek the representatives’ ‘ideal points’ which are located in some

multidimensional space. For political scientists, this modeling approach has a particularly

tidy behaviorial justification, in that it can be seen as an empirical implication of the spatial

theory of voting (Downs, 1957; Poole, 2005). A standard version of this setup has a legislator

with ideal point xi ∈ R considering a choice between the ‘aye’ position ζj and ‘no’ (or ‘status

quo’) position ψj for the jth bill. If legislators have quadratic utility functions over the

policy space, the relevant comparison is between the utility garnered from the proposal,

Ui(ζj) = −||xi − ζj||2 + ηij versus the utility from the status quo, Ui(ψj) = −||xi −ψj||2 + νij

where || · || is the Euclidean norm and η and ν are error terms. The observed data is the roll

call matrix Y with a typical element yij being zero (if the ith legislator votes to retain the

status quo) or one (if she votes for the new proposal). With distributional assumptions on

the stochastic disturbances, estimation may be via (some version of) maximum likelihood

(e.g. Poole and Rosenthal, 1997) or by way of Markov chain Monte Carlo techniques (e.g.

Martin and Quinn, 2002; Clinton et al., 2004).

Notice that, typically, no a priori restrictions are placed on the bills or members included

in the analysis and that the researcher does not use any bill-specific (‘this vote was about

farming subsidies’) or legislator-specific knowledge (‘this Senator is in the Republican party’)

to obtain estimates of the parameters of interest. In the context of Westminster politics,

such scaling procedures will naturally place the government loyalists and the opposition at

alternate ends of the ideological space since they have diametrically opposed records: the

opposition votes non-sincerely and attempts to defeat the government at any opportunity.

Meanwhile the rebels, who vote ‘with’ the opposition some positive proportion of the time,

will be placed somewhere in the ‘middle’ (Spirling and McLean, 2007). No straightforward

post-estimation rotation or stretching of that space can resolve the difficulty. Table 1 sum-
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marizes this problem, and reports the relative positions of five members whose comparative

ideological positions and ‘types’ are well known in the Westminster politics literature (see,

e.g, Cowley, 2002). To represent the loyalists, we report results for Giles Radice who was

an early reformer of the Labour party known for his fealty to the Blair Government under

study, and John Prescott, a former leftist who was deputy leader of the Government during

this period. Jeremy Corbyn and Dennis Skinner are, respectively, the most and the tenth

most ‘rebellious’ of the 1997-2001 Labour MPs, in terms of defying their party whip. The

last member for consideration is William Hague, leader of the Conservative party and of the

opposition, and no doubt to the right ideologically of the House of Commons as a whole. The

table reports the estimated parliamentarian positions from three popular routines common

in political science: a non-parametric cutting procedure known as ‘Optimal Classification’

(Poole, 2000), a scaling model known as ‘NOMINATE’ (Poole and Rosenthal, 1997) and a

two-parameter probit model estimated via MCMC with diffuse priors (Clinton et al., 2004).

The data consist of the votes of every Labour and Conservative MP on every division. The

results clearly clash with our strong substantive priors; we see the left-wing rebels to the right

of the loyalists, and closer to the Conservative opposition than the Government apparatchiks.

There are, of course, simpler alternatives to those suggested above, and MacRae (1970)

discusses several. The researcher could, for example, obtain the Euclidean (or other) distance

between rows of the roll call matrix Y, and then apply, say, principal component analysis to

the resulting dissimilarities. A practical concern here is how to deal with missing observations

in Y , but, no matter how that is solved, the problem noted above reemerges. Consider the

partition of the distance matrix that includes just the rows dealing with our example MPs, as

displayed in Table 2. Again, we see that Hague, the opposition leader, is ‘closer’ to Corbyn

(the left-wing Labour rebel) than he is to Prescott (the government loyalist). Unsurprisingly,

neither principal components analysis nor factor analysis does much better.
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ideological space Left Center Right
(groups) Rebels Govt Loyalists Opposition
expected order Corbyn Skinner Prescott Radice Hague

estimated rank
Radice [8.5] Prescott [304.0] Skinner [399.0] Corbyn [419.0] Hague [535.5]

[Optimal Classification]
estimated position

Radice [-0.90] Prescott [-0.85] Skinner [-0.60] Corbyn [-0.56] Hague [0.90]
[NOMINATE]
estimated position

Radice [-0.14 ] Prescott [-0.14] Skinner [-0.13] Corbyn [-0.12] Hague [0.15]
[Bayesian 2P probit]

Table 1: Estimation of various MPs’ spatial locations with standard routines. At the top of the table,
in the first row, we give the expected positions/ordering from left to right: in reality, Corbyn and Skinner
are the most left-wing, Prescott and Radice and somewhere in the middle while Hague is to the right
of all the other members. The second row [in brackets] gives the estimated rank order of the members in
question, via ‘Optimal Classification’. The third and fourth rows give the estimated ideal points [in brackets]
from two popular routines common in political science. Notice that non-sincere voting by the opposition
means that ‘Rebels’ from the governing party are placed ‘in the middle’ when we estimate their location
with standard statistical models: to the right of the Government and to the left of the opposition. For
example, substantively we know that Radice should have an ideal point closer to Hague, than Corbyn has
to Hague—yet we see the opposite in rows 2, 3 and 4.

Corbyn Skinner Prescott Radice Hague
Corbyn 0.00 5.63 10.75 10.01 33.74
Skinner 5.63 0.00 8.83 8.20 34.17
Prescott 10.75 8.83 0.00 3.73 34.35
Radice 10.01 8.20 3.73 0.00 34.54
Hague 33.74 34.17 34.35 34.54 0.00

Table 2: Distance matrix (partition of whole matrix) for MPs in running example. Notice that Corbyn is
‘closer’ to Hague than Prescott is to Hague. This does not accord with our priors about ideological position.
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3.2 Clustering

Explicitly searching for groups within parties is a sensible alternative to ‘scaling’. Part of

the appeal stems from the fact that we need not assume independence among observations

when interpreting the clusters. Rather than asserting that individuals have latent traits (and

that their errors are independent of one another) cluster approaches are congruent with a

conglomeration of members who may be actively influencing one another to vote certain

ways.

The methodological options are many. Of the partition approaches, K-means (and its

derivatives) is perhaps best known (MacQueen, 1967; Hartigan, 1975). Standard drawbacks

include the fact that missingness is not handled by the routine and the number of clusters

must be a priori specified (much as the number of dimensions must be decided for an item

response approach). This latter point means that searching for an ‘optimal’ choice of K

is not generally possible. Instead, one can conceive of the data as the result of a mixture

distribution, the ‘optimal’ number of components of which may be estimated (Fraley and

Raftery, 2002). Typically though, these techniques assume that the mixture is composed of

multivariate normals, which is an odd modeling choice when the voting responses in question

are binary. This criticism similarly applies to model-based hierarchical clustering algorithms.

In any case though, investigating the substantive nature of the clusters is problematic. This is

primarily because we do not have immediate access to the criteria—in terms of the divisions

—around which the clusters form. Thus, we cannot know from the estimation itself whether

a cluster corresponds to, say, ‘pro-life members’ or ‘anti-death penalty liberals’ or ‘anti-

tax libertarians’ etc. Hartigan (2000) considers a ‘partition model’ wherein each bloc of

legislators votes similarly to one another on some set of bills; this approach allows for possible

cross-party voting that would seem incompatible with projecting the roll matrix to one or two

dimensions. Though estimated via Markov chain Monte Carlo, Hartigan’s method does not
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facilitate explicit comparison of models via a posterior over the number of blocs in the data,

which might have a philosophical appeal from a substantive political science stand point.

Moreover, the approach is reasonably computationally intensive: for 100 senators, and 101

votes, a billion partition pairs must be checked. In our whole data set (i.e. Labour and

main opposition members), there are 591 legislators, and 1278 bills—suggesting a somewhat

larger estimation problem.

All told, studying intra-party blocs is suitably approached as a clustering problem.

Desiderata include a model-based method that allows for a binomial data-generating process.

We would like to make uncertainty statements over cluster membership and know on what

basis the blocs are divided. Moreover, we would prefer an approach that is able to deal with

missing observations in a reasonable manner.

4 A Nonparametric Model for Divisions Data

Before describing the model’s formal components, it is important to be clear about the

philosophical task at hand. We wish to provide a sensible summary of the data that has

internal validity—i.e. we wish to uncover patterns in the roll calls that are helpful to sub-

stantive researchers. We are less concerned about the external validity of our estimates;

otherwise put, we are not attempting to provide a general empirical picture of Westminster

politics for all times and situations.

Let i = 1, . . . , I index MPs and j = 1, . . . , J index divisions. Our goal is to model the

I×J matrix of observed votes by the I MPs on the J divisions. We let Y denote this matrix,

yi denote the vector of votes specific to MP i, and yij the observed vote of MP i on division

j. By convention, we code yij = 1 if MP i voted “Aye” on division j, yij = 0 if MP i voted

“No” on division j, and yij is coded as missing if a formal vote was not recorded for MP i on

division j. All data analyzed below are from Firth and Spirling (2005), who have written a

package for the R statistical language and environment—called tapiR—that downloads roll
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call records and formats them in a helpful way for analysts.

4.1 The Likelihood

Given the binary nature of the observed vote matrix, a natural choice for the likelihood

of MP i’s vector of observed votes yi is:

L(yi|θi) =
J∏

j=1

θ
yij

ij (1 − θij)
1−yij (1)

where 0 ≤ θij ≤ 1 gives the probability that MP i votes “Aye” on division j for j = 1, . . . , J .

We assume that missing values of yij do not enter into the product above. Assuming the

votes of MPs i and i′ are independent given θi and θi′ for all i and i′ we can write the

likelihood of the entire observed vote matrix as:

L(Y|θ) =
I∏

i=1

J∏
j=1

θ
yij

ij (1 − θij)
1−yij (2)

As the reader can easily see, the likelihood has as many free parameters as there are observed

data points and is thus primarily useful as a starting point for a hierarchical model rather

than a final probability model in its own right. The next subsection details the prior used

in our model and shows how this prior greatly reduces the effective number of parameters

to be estimated.

4.2 The Prior

Our modeling strategy borrows heavily from recent work on Bayesian nonparametrics

(Escobar and West, 1995, 1998; Neal, 2000; Dahl, 2003; see also Ferguson, 1973; Blackwell

and MacQueen, 1973; and Antoniak, 1974). In particular, we assume that each θi is a priori

drawn from a distribution G:

[θi|G] ∼ G.

Our model can be considered nonparametric in that we do not specify the parametric form

of G. Instead, we assume that G is generated by a Dirichlet process with parameters α and
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λ which we write as:

[G|α, λ] ∼ DP(αG0(·|λ)).

Here G0 is the centering distribution and represents, in a certain sense, one’s best guess

as to the shape of G. The α > 0 is a concentration parameter that determines how close

realizations of G are to the centering distribution G0. As α gets larger, realizations of G

tend to more closely resemble G0. Finally, λ represents a vector of hyperparameters that

determine the shape of G0. For the work in this paper we assume that G0 is the distribution

with density

g0(θi|λ) =
J∏

j=1

{
Γ(λ1j + λ0j)

Γ(λ1j)Γ(λ0j)
θ

λ1j−1
ij (1 − θij)

λ0j−1

}
.

In words, G0 is the product of J beta distributions.

One property of the Dirichlet process that is of use in our application is that realizations

of G will be discrete with probability one (Ferguson, 1983). This property of the Dirichlet

process is useful in our application because it allows us to view our model as a countably

infinite mixture model and to perform inference not only about which MPs are likely to

cluster together in voting blocs (i.e., have the same value of θ) but also about the number of

distinct voting blocs. In what follows, we let K denote the number of discrete support points

of G. We note that the value of the concentration parameter α induces a prior distribution

over K– as α gets larger more mass is assigned to larger values of K.

To complete the model, prior distributions for α and λ need to be chosen. While α

could be fixed at a user-specified value we prefer to give it a proper prior distribution and

estimate it. In what follows we assume that α follows a gamma distribution with shape a0

and inverse scale b0. As noted above our prior beliefs about α imply prior beliefs about the

number K of clusters. Herein, we set a0 = 4 and b0 = 0.75. Via simulation it was found that

when α is equal to its prior 5th percentile (1.82) 10 clusters contain 95% of 400 observations.

When α is set equal to its prior median (4.90) 20 clusters contain 95% of 400 observations.
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Finally, when α is set equal to its prior 95th percentile 33 clusters will contain 95% of 400

observations. These numbers seem reasonable to us given what we know about the amount

of party discipline in the British Labour Party during this time period.

We complete the prior by assuming λ0j = λ1j = 0.1 for all j = 1, . . . , J . This is consistent

with a prior belief that the expected probability of a randomly chosen MP voting “aye” on

a randomly chosen division j (θij) is the same as the expected probability of that MP voting

“no” on that division (1− θij) and that these probabilities are not close to 0.5. Specifically,

our assumption implies that under the centering distribution Pr(θij > 0.95) = Pr(θij ≤

0.05) = 0.378. This prior decision is consistent with our goal of finding voting blocs that

are relatively homogenous in terms of observed votes. Allowing for more prior mass near 0.5

would allow for more within-bloc heterogeneity which we explicitly want to avoid.

It is important to be clear about the nature and stringency of the independence assumptions—

across votes and across MPs—being made in our model. As per Equation (1), we require

conditional independence of MP i’s voting decisions given MP i’s vector of vote probabilities

(θi). Since θi has as many elements as there are voting decisions, and we have chosen to set

the prior so that most of the elements of θi are very close to either 0 or 1, this independence

assumption is relatively innocuous. Relatedly, we assume that yi is independent of yi′ given

θi and θi′ (see Equation 2). While this assumption is unlikely to be correct, we don’t see

this as particularly problematic if our goal is to summarize an existing vote matrix. Note

that if θi = θi′ MPs i and i′ are in the same cluster, thus a very strong form of dependence is

actually allowed in our setup. The conditional independence assumptions we make would be

more worrisome if we hoped to use our model to examine counterfactuals of the sort, “how

would MP i vote if MPs i′ and i′′ both vote ‘aye’?”. We are not interested in such questions

here.
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5 Results

Our primary focus is on identifying intra-party voting blocs in the British Labour Party

during the first Blair government (1997-2001) along with the divisions that separated these

major groupings of MPs. In what follows, we analyze the Labour MPs behavior without

reference to the behavior of MPs from rival parties. With two exceptions, no Labour MP

has a voting record that even remotely resembles the voting record of any Conservative MP.

The exceptions are Shaun Woodward and Peter Temple-Morris who switched parties during

the 1997-2001 session of Parliament.

5.1 Labour Party Voting Blocs 1997-2001

After dropping unanimous votes and MPs who never voted (along with the party-switches

Shaun Woodward and Peter Temple-Morris) we have I = 424 Labour MPs and J = 198

non-unanimous (within the Labour MPs) divisions during the 1997-2001 Parliament. In

Figure 1 we summarize the data. The thin grey line in the main body of the plot records the

proportion of the party voting in the minority for any given bill in the data set (which are

arranged chronologically on the x-axis). Notice that this proportion has reasonable variance

over time, although its moving average—described by the broken loess line—is relatively

low. The thick black line gives the cumulative proportion of members who have voted with

the minority of their party as each bill occurs. Note that, of 424 members, almost every

single one has deviated from the majority view at least once by the time the parliament

ends. Finally, the x-axis itself is the mean proportion of members voting differently to the

majority over all (1279) bills in the parliament. This is very close to zero, demonstrating

the generally strong party discipline in the Commons. All told, it is not immediately clear

whether there are multiple distinct subgroups of Labour MPs who tend to vote similarly.

Our modeling goal is to determine this.

The priors used to generate the results discussed below are that α ∼ Gamma(4, 0.75)
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Figure 1: Voting Summary for Labour MPs 1997-2001. Thin grey line is proportion of MPs
voting in minority on any given vote (broken line is loess moving average of this proportion).
Thick black line is cumulative proportion of MPs voting in minority over time. The intercept
of the x-axis with the y-axis is the mean proportion (essentially zero) of MPs voting with
the minority of their party over the entire universe of bills for the period—which includes
some 1279 divisions.

and λ0j = λ1j = 0.1 for j = 1, . . . , J . As noted above, the prior for α was chosen based on

our prior beliefs about the number of groups and that fact that we believe that there will

be very few occasions when it is sensible to think the probability of an MP voting in either

direction is close to 0.5.

The model was fitted to the Labour data using Markov chain Monte Carlo (MCMC).

Details of the MCMC algorithm employed are provided in Appendix A. The chain was run

for 510,000 iterations and the first 10,000 iterations were discarded as burn-in. Because of

memory constraints every 100th draw after burn-in was stored for a total of 5000 stored

draws.
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k = 10 k = 11 k = 12 k = 13 k = 14
Pr(K = k|Y) 0.0478 0.4402 0.4418 0.0684 0.0018

Table 3: Posterior Distribution of Number of Clusters (Labour 1997-2001).

Figure 2 shows the marginal posterior density of α. As can be seen here, there is in-

formation in the data about the likely value of α. In particular, the data suggest that α is

toward the lower end of the range we deemed a priori likely.

Figure 2: Marginal Posterior Density of α in fit to Labour 1997-2001 Data. The dark line is
a kernel density estimate of the marginal posterior and the light line is the Gamma(4, 0.75)
prior density.

The α parameter is really of interest primarily because of its effect on the number of

clusters (voting blocs) that are supported by the data. Looking directly at the posterior

distribution over the number of clusters K is a more intuitive way to get some sense of the

extent of clustering. This distribution is presented in Table 3.

As can be seen from Table 3, there is strong evidence that there are either 11 or 12

distinct voting blocs within the Labour party during the first Blair government. The posterior
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probability of their being either 11 or 12 blocs is 0.882.

While the number of voting blocs is of some interest we are primarily concerned with the

size and membership of each of the blocs. Because the number of clusters is not constant

and the cluster labels are completely arbitrary (and change over the course of the MCMC

sampling) it is not meaningful to look at the number and identities of MPs in a cluster with

a particular label. Instead, we focus on the probability that any two Labour MPs are in

the same cluster for all pairs of Labour MPs; i.e., Pr(θi = θi′), i = 1, . . . , I, i′ = 1, . . . , I.

These probabilities do not depend on the cluster labels or the number of clusters and are

thus meaningful quantities. Taken together, these probabilities define an I × I matrix P.

It is worth emphasizing that P contains qualitatively different information than that

usually examined by scholars of Westminster voting. In particular, previous work focusses

almost exclusively on voting in the Commons in terms of ‘rebellion’ by backbenchers. In

those accounts, behavior is binary: either MPs obey the whip, or they do not. Exemplars

in this vein include comprehensive tomes by Norton (1975; 1980) and detailed accounts

by Cowley (2002; 2005) where the goal is to describe particular episodes of dissent, those

involved and the effect on policy making. In this undertaking though, notice that we are

not constrained by previously defined categorization of either MPs (‘rebellious’, ‘loyalist’

etc) nor divisions (‘controversial’, ‘whipped’ etc). Indeed, several of our clusters below arise

from bills that few scholars would necessarily know a priori were useful for categorization of

actors. The result is thus a more nuanced picture of behavior and structure in the (governing)

Labour party. Some scholars, e.g. Dunleavy (1993), have looked at intra-party dimensions of

conflict beyond a ‘left’ versus ‘right’ or ‘leadership’ versus ‘backbenchers’ dichotomy though

such accounts do not often use data to test hypotheses per se. Thus our approach and

findings provide a new testing ground for such accounts.

Since P is too large to summarize directly, we sort the matrix to reveal the underlying

groups. We do this as follows. First, we create a dissimilarity matrix D based on Euclidean
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distance between the columns of P (we experimented with several metrics, and all give

approximately similar results). Seriation with a minimized Hamiltonian path is then used to

sort the rows and columns of P. This creates a two-dimensional representation of the MPs’

expected voting profiles in which MPs with similar voting profiles are located adjacent to

each other (see Hahsler et al., 2008, for details). The results are plotted in Figure 3, and the

names refer to individuals we discuss below. Darker (square) areas are groups that are tightly

bound together in terms of their cluster membership. Notice that the plot is symmetric, but

that there is no substantive sense in which we have a continuum of groups from, say, ‘left’

to ‘right’ in the party; this logic applies similarly to our use of nominal numerical labels for

the blocs in what follows.

5.1.1 Core Loyalists

The first bloc are the core Labour government loyalists who consistently support the

government on almost all divisions. It is very likely to contain the Prime Minister Tony

Blair, the Chancellor Gordon Brown and Foreign Secretary Jack Straw. Indeed, with just

three exceptions, every other member of the Cabinet that served between 1997 and 2001

inhabits this group. Intriguingly, of these three ministerial deviants, two were fired in 1998

after just a year of service to the Prime Minister. This group also includes the majority of

the members joining the Commons for the first time in 1997. Bloc 11 is made up of similarly

loyal MPs such as Giles Radice, an early reformer in the ‘New Labour’ mould, along with

David Blunkett, the Prime Minister’s first choice for Secretary of State for Education. The

primary difference between this group and the core loyalists is over the choice of Speaker.

In the House of Commons, this is a non-partisan position, in which the governing party

often has a preferred candidate but whose election it does not whip. In this particular case,

these MPs were less supportive of the purely loyalist choice of Michael Martin (the eventual

winner). All told, the loyalists constitute about sixty percent of all Labour members.
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5.1.2 Leftists

Bloc 9 are the ‘hardcore’ rebels in the parliamentary party, who took a general disliking

to the government’s policy plans. This group includes ‘usual suspects’ like Diane Abbott,

Tony Benn, Bernie Grant and Jeremy Corbyn. All of these members are part of the left-wing

‘Socialist Campaign Group’ that criticizes New Labour relentlessly from the backbenches.

They disapproved of government attempts to, inter alia, cut benefits to lone parents and

disabled people, to privatize the national air control system, and to reform trial-by-jury

procedures. Other groups in the data are similar to this leftish caucus, but are exorcized by

particular subsets of issues: the welfare socialists of Bloc 4 (which includes former coal miner

Dennis Skinner) were keen to avoid changes to the benefit system; Lawrence Cunliffe (who

forms Group 2) was unimpressed with plans to cut funding for university students; Bloc 3,

which includes the fired cabinet minister David Clark, wanted the Freedom of Information

Act (2000) to go much further.

5.1.3 Mavericks

Several members, and several groups, are not best described as either loyal or rebellious.

Instead, they take unusual lines on certain (typically free) votes, that suggest they are

ideologically different to the bulk of their colleagues. For example, members of Blocs 1

(which includes sometime minister Tony Banks) and 10 generally felt that the City of London

Ward Election bill—which dealt with possible democratization of an ancient arrangement

for municipal governance in the capital—should go further in giving citizens voting rights.

By contrast, Blocs 6 and 8 were concerned that legislation dealing with firearms would

inappropriately punish law-abiding sporting shooters. Intriguingly, Bloc 6, which includes

Kate Hoey (now the chair of a major countryside interest group), was unusually keen on

fox hunting, a position associated with rural and aristocratic conservatives. For a party

that stresses equal rights and opportunities, it is odd that members such as Denzil Davies
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(forming Bloc 7) and those in Bloc 5 would be sceptical of government-backed plans to

reduce the age of homosexual consent from 18 to 16 (thus bringing it on par with that of

heterosexual consent). Nonetheless, these individuals made their views known in the voting

lobbies of the Commons.

Blair, Tony 

Banks, Tony 

Blunkett, David 

Corbyn, Jeremy 

Cunliffe, Lawrence 

Hoey, Kate 

Skinner, Dennis 

Figure 3: Seriation Representation of Expected Voting Groups (Labour MPs 1997-2001).
Loyalists are bottom right dark square. MPs in bloc 1 are in the upper left corner (Tony
Banks). MPs in bloc 12 are in the lower right corner (Tony Blair). Numbering of the blocs
proceeds down the main diagonal from 1 to 12.

5.1.4 Judging the Extent of Rebellious Behavior

To gain some additional insight into the nature and degree of rebellious voting behavior

in the Labour party during this time period we calculate an average voting profile for each of
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the voting blocs. We let ȳk denote the average voting profile for bloc k. The jth element of

ȳk is simply taken to be the sample average ȳk,j = I−1
∑

i∈Bk
yi,j, where Bk denotes the kth

voting block as derived from the seriation of P above. With these average voting profiles in

hand we can make a number of comparisons between groups to examine the extent of their

divergence in voting behavior. Our measure of voting similarity between bloc k and bloc k′

is

si,i′ = 1 − J−1

J∑
j=1

I[|ȳk,j − ȳk′,j| > 0.5]

which is 1 minus the fraction of absolute differences in average votes that are greater than

0.5. A value of 1 indicates that blocs k and k′ have identical voting profiles, while a value of

0 indicates that all elements of the voting profiles differ by more than 0.5.

Figure 4: Degree of Similarity to Labour Loyalists and Socialist Campaign Group Rebels.
The y-axis in the left panel depicts 1 − J−1

∑J
j=1 I[|ȳ12,j − ȳk,j| > 0.5] and the y-axis in the

right panel depicts 1 − J−1
∑J

j=1 I[|ȳ9,j − ȳk,j| > 0.5]. Note that that even after excluding
Bloc 8 (which only consists of two MPs) that similarity to the Labour Loyalists (Bloc 12) is
not monotonically related to similarity to the Socialist Campaign Group (Bloc 9). This is
consistent with there being multiple types of “rebellious” voting in the House of Commons.
Note that the horizontal location of each point has been shifted purely for display reasons.

Figure 4 presents comparisons of all blocs to the Labour loyalist group (group 12) and

all blocs to Bloc 9 (the Socialist Campaign Group rebels). Here we see that even the blocs
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most similar to the Labour loyalists differ substantially from the loyalists on about 5% of

votes. On the other hand, four of the eleven non-loyalists blocs differ substantially from the

loyalists on between 20 and 50% of the votes. It is also the case that blocs that appear to be

roughly equally similar to the loyalist bloc (say blocs 3 and 5) have very different similarities

to the Socialist Campaign Group bloc. This highlights the point that the groups are being

formed not just on the basis of their similarity to the Labour loyalists but on their overall

similarity to other voting groups. Finally, note that ranking blocs by their similarity to bloc

12 does not produce the inverse similarity ranking of those same blocs to group 9. This

suggests that the nature of voting within the Labour party cannot be accurately captured

by a single dimension measuring loyalty to the government.

5.1.5 Difference vs Dissent, 1992–2005

Our approach here is a complement to, rather than a substitute for, earlier work that

considers ‘dissent’ as the key behavior of interest (e.g. Garner and Letki, 2005; Kam, 2001).

We can build on accounts such as Benedetto and Hix (2007), for example, who argue that

rebellion is most likely for backbenchers who are ‘rejected’ for promotion to higher office, or

‘ejected’ from the front benches, having been fired for some reason or other. While the P

matrix of bloc probabilities will certainly take the instances of rebellion into account, it will

also be conditioned on instances of ‘difference’ in less whipped votes. Moreover, the P matrix

can be calculated for different subsets of the rolls calls—which allows a time component to

be introduced to the analysis. To see how this might work, consider Figure 5 wherein

each subplot shows the difference between five MPs and the median MP’s closeness to the

loyalist bloc for the Labour party in any given year. Nick Ainger, a long serving member

from the core loyalist group provides the baseline for the loyalist comparison. Here we have

extended the analysis, mutandis mutatis, to 1992–2005 which covers the period before Blair

became leader of the Labour party and just before he stepped down (and have included party
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switchers). The plots may be interpreted straightforwardly: when the lines rise, the MP is

becoming more likely a part of the loyalist cluster; when they fall, she is more likely to be

part of a different (non-loyalist) cluster. The broken lines represent election dates. The first

row is Tony Banks, a veteran left-winger who is, in fact, remarkable similar to the median

MP in terms of his probability of being within the loyalist cluster over time. This is despite

his promotion and then firing as Sports Minister in 1999. By contrast, Jeremy Corbyn, in

the second plot, is very average in his behavior until just after the 1997 landslide election.

He then moves in a more rebellious direction than the median Labour MP, before starting to

vote with the government again just before the 2001 election. By the time of the Iraq war, in

2003, he is has seemingly abandoned the loyalists for good. In the third row, Kate Hoey is an

unusual case: a loyalist and latterly a minister until 2001, she is then fired and moves from

a zenith of loyalism to a grouping entirely separate from them. The loyalists do not seem to

lose the Vauxhall MP for good, however, and she returns to the fold briefly in 2002. As noted

above, Hoey is not necessarily in the same camp as Corbyn ideologically: for example, at

least part of her distance from the average Labour member is due to her outspoken support

in the Commons for fox hunting. A less nuanced story emerges for Glenda Jackson (fourth

row), who entered parliament in 1992 and was gradually promoted to government roles with

more responsibility. Perhaps unsurprisingly, she is no more or less loyalist than the median

MP during this time. Upon leaving front bench politics in 2000 (in an effort to run for

Mayor of London) she remained relatively loyal, but then moved far from the median just

after the 2001 election and towards the left-wing of the Labour party. The last subplot is

that of Shaun Woodward, a loyal Conservative MP (and thus a member of the opposition)

who switched parties in 1999 and instantly became loyal to his new masters in the Labour

party.

These plots are hardly conclusive, but they do begin to illustrate the extra depth re-

searchers can obtain by modeling voting records in terms of probabilistic clustering. Rather
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Figure 5: Probability profile, in terms of ‘loyalist’ cluster membership, for different ‘types’ of
MPs over time in the House of Commons. Broken lines are election dates: ‘a’ denotes the
period in parliament before the election in a given year and ‘b’ the period after.

than trying to laboriously code every division as whipped or unwhipped, and then to ‘count

up’ the instances of deviant behavior to be used as a dependent (or independent) variable,

our approach allows analysts to directly and unavoidably compare and contrast MPs with

their colleagues. This facilitates a more helpful relative positioning and classification label

that has some of the strengths of scaling without the misleading inferences that arise with

‘off-the-shelf’ methods. Moreover, unlike the foregoing literature on Westminster politics,

we can straightforwardly obtain the relevant divisions that ‘probably’ contribute to the pro-

files in the plot, without resorting to arranging every member on a crude ‘rebel’/‘loyalist’

continuum.
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5.2 Model Fit

To get some sense as to how our model fits the data we employ a posterior predictive

check (Gelman et al., 1996), that is similar in spirit to those discussed by Gelman (2004)

and Buja (2004). Specifically, we generate 19 new roll-call matrices from the appropriate

posterior predictive distribution. We then display image plots of these matrices in Figure 6

along with the observed roll call matrix. The observed roll call matrix is put in a randomly

chosen position. If it is the case that the model does a poor job of capturing observed

patterns in the data then the observed roll call matrix should be easily spotted in the 5× 4

“lineup” in Figure 6. We submit that the observed data are not easily detected and thus

this check provides no evidence of poor model fit.

6 Discussion

The modeling strategy discussed here has much to recommend it as a purely exploratory

method. It is model-based and thus allows for statements of uncertainty about all quantities

of interest. Further, model-based approaches do not suffer from the need to make essentially

ad hoc choices about a distance metric and/or how to handle missing data. However, unlike

standard model-based clustering methods (Banfield and Raftery, 1993) we do not fix the

number of clusters a priori. Instead, we estimate the number of clusters and allow the

uncertainty about this number to propagate naturally to the first-level model parameters of

most direct interest (the vote probabilities).

From a practical perspective, our method works well on real data from the UK House of

Commons. It allowed us to find meaningful groupings of MPs within the Labour Party. These

voting blocs make substantive sense and accord well with more in-depth qualitative analyzes

of the House of Commons during this period (Cowley, 2002). Similarly, we demonstrated

how our approach can be used to identify key divisions and conflictual issues. It is worth
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Figure 6: Posterior Predictive Replications Along with Observed Data. The rows have been
organized by group membership and the columns have been sorted first by observed majority
“No” vs. majority “Aye” and then by the number of non-missing observed votes within each
of these two groupings. Dark pixels represent “No” votes, light pixels “Aye” votes, and white
pixels missing values. The observed data are in fourth row from top and second column from
left.

noting that this was accomplished with nothing more than the observed vote matrices. For

this reason, our method may be of some use as a tool for more qualitative researchers

whose goal is a detailed examination of key pieces of legislation and key factions within the

parliamentary parties. Rather than sifting through the entirety of a parliamentary voting
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record, researchers can use our approach to identify key votes and groupings of MPs that

are worthy of more detailed analysis.
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A The MCMC Algorithm

We begin by introducing some additional notation. Let ϕ1, . . . , ϕK denote the unique

values of θ1, . . . , θI (the support points of G). Let ci ∈ {1, . . . , K} denote the cluster

membership of MP i, i = 1, . . . , I . Specifically, ci = k ⇐⇒ θi = ϕk.

One scan of the MCMC sampling scheme used to fit the models discussed in this paper

is the following:

1. (a) Draw [c|Y,λ, α]

or

(b) Draw [ci|Y, c−i,λ, α] for i = 1, . . . , I

2. Draw [ϕk|Y, c, λ, α] for k = 1, . . . , K

3. Draw [λj|Y,ϕ, c, α] for j = 1, . . . , J

4. Draw [α|Y,ϕ, c, λ].

Step 1a) above is accomplished using the merge-split sampler of Dahl (2003) while step

1b) uses algorithm 3 of Neal (2000). Every 3rd scan attempted a merge or split while the

other scans used Neal’s algorithm 3 to sample c. It should be noted that the conjugacy

of the beta centering distribution to the Bernoulli sampling density makes this step quite

straightforward. All that is required is the ability to evaluate a beta-binomial density and

the willingness to take care of some rather tedious bookkeeping.

Given Y, c, λ, and α, ϕkj follows a Beta(n1kj + λ1j, n0kj + λ0j) distribution where n1kj

denotes the number of “Aye” votes on division j by MPs i = 1, . . . , I for which ci = k and

n0kj denotes the number of “No” votes on division j by MPs i = 1, . . . , I for which ci = k.

Realizing that ϕ1, . . . , ϕK are an iid sample from G0(·|λ) (Escobar and West, 1998, p.
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12) we can write the full conditional in step 3) as:

p(λj)
K∏

k=1

g0(ϕkj|λj)

where p(λj) is the (possibly degenerate) prior density for λj. We use the univariate slice

sampling algorithm of Neal (2003) to sample from this full conditional.

Finally, given the gamma prior we adopt for α, it is possible to use the data augmentation

approach of Escobar and West (1995) (see also Escobar and West (1998)) to sample α. This

is the approach used in this paper.
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