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Abstract

Analysts often seek to compare representations in high-dimensional space, e.g. embedding vectors

of the same word across groups. We show that the distance measures calculated in such cases can

exhibit considerable statistical bias, that stems from uncertainty in the estimation of the elements of

those vectors. This problem applies to Euclidean distance, cosine similarity, and other similar measures.

After illustrating the severity of this problem for text-as-data applications, we provide and validate a

bias correction for the squared Euclidean distance. This same correction also substantially reduces bias

in ordinary Euclidean distance and cosine similarity estimates, but corrections for these measures are

not quite unbiased and are (non-intuitively) bimodal when distances are close to zero. The estimators

require obtaining the variance of the latent positions. We (will) implement the estimator in free software,

and we offer recommendations for related work.
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1 Motivation

Social scientists routinely represent entities as vectors in high-dimensional spaces where the elements of those

vectors have been estimated (e.g., Mozer et al., 2020; Nyarko and Sanga, 2022; Rossiter, 2022; van Loon

et al., 2022; Rodriguez, Spirling and Stewart, 2023; Kraft and Klemmensen, 2023). For instance, they might

represent documents in terms of the modeled topic proportions they contain, or Members of Congress in

terms of their estimated positions in several dimensions of ideological space. From these representations,

researchers draw conclusions about the (dis)similarity, between the documents or actors in question. They

do this via measured distances between the vectors. This calculation is typically trivial: for example, it

takes very little computational effort to compare two word embedding vectors in terms of their Euclidean

distance from one another. But this simple “plugin” estimator can be misleading in practice. This is because

the elements of the vector are estimated with error, yet this uncertainty is not properly incorporated into

the distance calculation. The result is an upward bias in the measurement of that distance; and this bias is

worse when the vectors are more poorly estimated. This problem has been observed in several fields, but the

remedies are not well known or implemented (e.g., Weir, Wheatcroft and Price, 2012; Walther et al., 2016;

Logan et al., 2018; Gentzkow, Shapiro and Taddy, 2019).1 Thus our treatment below.

We explain the problem and show that statistical bias can be large and consequential, especially in

comparisons where one group-wise distance has been estimated with greater uncertainty than another dis-

tance. This might be due to different sample sizes. Less intuitively, it might be due to sample sizes that

are imbalanced across comparisons: e.g. a (very imbalanced) majority v minority group vector distance

versus a (balanced) 50:50 group distance. This is in contrast with bias in (balanced) pairwise distances of

non-averaged vectors (Mozer et al., 2020; Rossiter, 2022; Kraft and Klemmensen, 2023), where a) researchers

intend for distances to capture levels of measurement error (and not a document’s expected value) or b)

such bias may have more limited effects on later inferences – since researchers might plausibly assume more

or less equal measurement error across studied pairs.

We derive an estimator that does not suffer from this bias, and we show that it performs well in a variety

of settings. Finally, we provide solutions to practical issues that arise in the embedding regression setting

(e.g. statistical testing and inference) and incorporate the solution into the conText package in R.

1In practice, distances are typically not corrected for statistical bias (see, for example, uncorrected estimates in Rodriguez,
Spirling and Stewart 2023). When bias is addressed, approaches include using cross-validation (Walther et al., 2016) (an
approach not yet used in political science – that is functionally equivalent to our simple correction, but difficult to extend to
complex designs) or using the mean of pairwise estimates and then comparing those means of a kind of permutation distribution
(Kraft and Klemmensen, 2023) (without correcting bias). Our work is distinct from research that identifies and attempts to
correct for term-frequency bias in word embedding association tests (e.g. van Loon et al., 2022; Kindel, 2023) (due to biases in
position); however, the form of bias we correct here might also contribute to observed frequency-related biases.
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2 Why Uncertainty in Position Leads to Bias

To fix ideas, suppose one had a relatively short vector—of length 2—representing a word embedding. For the

word “immigration” (say) that embedding is estimated (e.g. because it is based on a sample of speech) to be

v̂D = (−0.1, 1.2) for Democrats in Congress. The inferential task is to compare it with some other embedding

vector which, for now, we will assume is known (not estimated) and is vR = (0, 1) (the noiseless, expected

value of the “immigration” embedding for Republicans in Congress). The Euclidean distance between v̂D

and vR is 0.224. The cosine similarity between them is 0.997. We might ask: is the (true) Euclidean distance

plausibly zero, and is the cosine similarity plausibly 1?

To see the problem, suppose our estimate of vD is noisy. This might be because we do not have many

Democrats in our sample, and thus there is more uncertainty over each (averaged) element in the v̂D vector.

If we increase the noise in the estimated v̂D when there is no (true) difference between vD and vR, we always

move it further from (0, 1). But this bias also applies in expectation when there is some (true) difference

between vD and vR. For instance suppose that across samples or noisy measurements, the values that we

estimate for vD (the unobserved sampling distribution of v̂D) are sometimes greater than corresponding

elements in the vR vector and sometimes less. Then our element distances are nonetheless always positive;

thus in expectation, the estimated distance is greater than the true distance. We illustrate this effect in SI

Figure C.1, and also there expand our bias explanation.

To characterize the bias more fully and precisely, consider measuring the Euclidean distance between two

(estimated) length-K vectors θ̂ and ϕ̂—of which our word embeddings vectors above were just specific exam-

ples. This is, by definition, the L2 norm of the difference between those vectors, ∥θ̂−ϕ̂∥2 =
√∑K

k=1(θ̂k − ϕ̂k)2.

Now, for presentation reasons (though, as noted below, this will also be our preferred norm), suppose we

square that norm. That is, we are working with ∥θ̂ − ϕ̂∥22 =
∑K

k=1(θ̂k − ϕ̂k)
2. Taking expectations on both

sides we have

E
[
∥θ̂ − ϕ̂∥22

]
= E

[
K∑

k=1

(θ̂k − ϕ̂k)
2

]
(1)

=

K∑
k=1

E[(θ̂k − ϕ̂k)]
2 + V [θ̂k − ϕ̂k] (2)

= ∥θ − ϕ∥22 +
K∑

k=1

V [θ̂k − ϕ̂k]︸ ︷︷ ︸
Bias

(3)
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where line 2 follows because E[X2] = E[X]2 + V [X] for a random variable X. Importantly, variance here is

the variance of the (unobserved) distribution of the estimator (i.e., the squared standard error). The point

is that the bias (for the squared norm) is the (sum of) the variances of the differences between the vectors’

elements. And those variances result from uncertainty in estimation of ϕ and θ. Only if the elements of those

vectors are estimated without error is there no bias. To be clear, there is no obligation to use the squared

Euclidean norm—one can use the unsquared version (as in Rodriguez, Spirling and Stewart 2023, where this

version is used but uncorrected), cosine similarity, or some other metric. But some version of the bias will

remain—and the form of the bias is not straightforward to write down or fully correct (see SI Sections C.2

and C.2.1).

Linking this back to our initial motivating example, we need to subtract the variances (i.e., the squared

standard errors) of v̂D1–vR1 and v̂D2–vR2 from 0.2242 ((v̂D1–vR1)
2 + (v̂D2–vR2)

2) for an unbiased estimate

of the squared Euclidean distance between vD and vR.

3 Why This Matters, Even in Large Samples

Inspecting Equation (3), when could we realistically expect the absolute bias to be small or zero? It is

when we have a very large amount of data such that our estimates of the (elements of the) vectors are close

to their true population values. And, for descriptive relative comparisons such as “the difference between

Democrat women and men on this issue is larger than for Republican women and men” we must describe

the distances correctly if measurement or sampling error may be unequal across these comparisons. But to

clarify, the issue is not that small samples make claims about whether one vector is statistically significantly

different to another harder to assess; they do, but that is a separate matter. The issue is that the claimed

(point) difference between the vectors is reported as being larger than it really is irrespective of hypothesis

test concerns.

Of course, it is hard to know in advance whether one has “enough” data or not. However, the problem

will remain in absolute terms when the dimension of the vector is high relative to the uncertainty. And,

below, we show that it can remain in relative terms when two compared group-wise differences are relatively

imbalanced.

To illustrate absolute versus relative bias, we use a 10% sample of the Twitter voter panel described in

Hughes et al. (2021) and compare random groups (where the true difference must be zero by construction)

of varying relative sizes and for the same overall sample size —for example, in more practical terms, a

3



50-50 party affiliation comparison based on 1000 total observations versus a 90-10 majority-minority racial

group comparison based on 1000 total observations. Specifically, we compare these groups by estimating

embeddings of the word children (derived by the methods in Rodriguez, Spirling and Stewart, 2023) for

them, restricting our analysis to a single tweet each from a random sample of users and only tweets containing

a single use of the word children—we address more complex designs later in this paper. We then calculate

the squared Euclidean norm of the difference between (the average) embedding vector of children for the

50-50 comparison (e.g., gender or U.S. political party) versus 90-10 (e.g., majority-minority race or religion).

In this, increasing group imbalance leads to increased estimate uncertainty.

Figure 1 shows the squared Euclidean norm (with jackknifed confidence interval) for both the balanced

and imbalanced random groups. While the size of the estimated difference—note the y-axis scale is much

smaller as we move across the page—is decreasing as the sample size grows (from 200 to 400 and upwards

to 10000 instantiations of the term), the difference between the balanced and unbalanced case remains

essentially the same in relative terms. This issue matters because the absolute size of the norm often has no

clear interpretation and scholars use the relative scale of the differences to benchmark their results. Simply

put, for practical reasons of interpretation, large sample sizes will not fix this issue.
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Figure 1: Smaller sample sizes and larger group imbalance both lead to increased estimate uncertainty, and
so artificially inflate distance estimates. This can exaggerate majority-minority group differences relative to
equally sized group differences.
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4 A Correction Based on Variance Estimation

Below, we derive a correction for both simple (a two-group comparison) and complex designs (e.g., non-

independent observations and controls). Our applied setting is embedding regression though it will work in

other settings too.

Consider the generic case where the model on our latent vectors is parameterized by a vector β. In the

context of two groups’ embeddings this would just be the difference between their average vectors (β = θ−ϕ)

but we can think of it as a more general regression parameter. If our summary of this vector is the squared

Euclidean norm, this would lead to the estimator,

∥̂β∥22 =

K∑
k=1

(β̂k
2
− V̂ [β̂k]) (4)

which is unbiased given an unbiased estimator of the variance V̂ [·] (and an unbiased estimator for β).2

For the (non-squared) Euclidean norm, because the corrected value can be negative, we can take the

square root of the absolute value ∥̂β∥22 and then apply the sign of the estimate. Let that sign of ∥̂β∥22

—i.e. literally whether the quantity
∑K

k=1 β̂k
2
−

∑K
k=1 V̂ [β̂k] is positive or negative—be denoted as sgn.

Then we have the estimator, ∥̂β∥ = sgn

√
abs

(∑K
k=1 β̂k

2
−

∑K
k=1 V̂ [β̂k]

)
. However, this estimator is no

longer unbiased, as we will show. And, unlike the squared version, it is strongly bimodal. We illustrate this

bimodality and potential interpretation problems in SI Figures C.3 and C.4. Nonetheless, it does provide an

estimate closer to a null of no difference, and with bias far smaller than for the uncorrected norm. Further,

in this form, the quantity can be used to (mostly) correct bias that arises in cosine similarity measures

(which itself arises due to bias in the Euclidean distance denominator of those measures; see SI Section C.7).

While we think it is reasonable for some researchers to prefer the ordinary Euclidean distance (and cosine

similarity), authors who use these corrected distance measures should be careful to fully explain to readers

their bimodal distributions and correspondingly skewed confidence intervals around 0.

These estimators rely on a way of estimating the variance of the estimator for β. For the simplest

case, for comparing embeddings of dimensions K, one can run K separate (linear) regressions, each with n

observations corresponding to the number of instantiations of the term in question. One then has immediate

access to the relevant β̂s and the standard errors (and thus variances) of the same. We illustrate this

debiasing using R’s lm function (R’s main linear regression function) in SI section A, where the de-biasing

2This can result in a negative estimate if the value of the variance is large enough. That case should be substantively
interpreted as implying “no difference” between the vectors.
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step is simply estimate2 - std.error2.

To demonstrate the efficacy of the correction, using variances estimated from the K linear regressions

method above, we simulate differences in means by sampling vectors from a multivariate normal and com-

paring the corrected and uncorrected norms for different group imbalances (50%-50% or 10%-90%). In this,

we sample k = 50 ‘embedding’ dimensions, for varying sample sizes. Across these 50 dimensions, the loca-

tions of the two groups are offset by a value of ±c, where c is a small or large number, on half (25) of the

dimensions. The variance of each dimension is selected by a random draw from a non-central (specifically

λ = 1) χ2 distribution with one degree of freedom, meaning that variance is not equal across dimensions.

Figure 2 displays the uncorrected plugin estimator for the squared Euclidean norm. It shows that whatever

the group imbalance, the corrected estimator is unbiased: on average, it recovers the true distance.
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Figure 2: This figure shows simulation results for the squared Euclidean norm divided by the number of
dimensions (i.e., the square of the true β’s). The horizontal black lines represent the true Euclidean norm
squared, divided by the number of dimensions (50). Points represent the averages of the simulations and
intervals are the 2.5% to 97.5% quantiles of the sampling distributions. Small sample size and greater group
imbalance increase estimation uncertainty (i.e., the standard error/variance of β̂). The effect of greater k
can be determined by multiplying the y axis scale by k.

Figure 2 in the SI is the same analysis for the non-squared (i.e. the usual) Euclidean norm. This corrected

estimator has a small negative bias, but it still substantially outperforms the plug-in estimator.
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Clustering and complex sampling designs

In some cases, such as embedding regression, observations are not independent. This can cause a naive

estimator to underestimate the variance of the difference and permutation tests to be inaccurate.3 In the SI,

we provide and validate through simulation straightforward solutions to these problems, demonstrating that

a) we can use sandwich-style standard errors to estimate the variance under clustering and other complex

designs when computing our debiased estimator, b) clustered permutation appropriately controls Type I

error under clustering (see SI Section C.6, and C.6.2), and c) residual permutation controls Type I error

with control variables (see SI Sections C.6 and C.6.2).

We illustrate performance under a realistic setting with clustering and covariates in Figure 3. For this,

we use a Twitter data set linked to voter records and voter demographics, described in Hughes et al. (2021).

In a 10% sample (approximately 150,000 users out of 1.5 million), we analyzed tweets between January 2019

and February 2023 that contained the word “people” (specifically 72,389 users, who posted 5.5 million tweets

containing ‘people’). To simulate sampling distributions with this ‘population’, we then created sub-samples

of users for varying sample sizes (n), taking 500 samples for each n. For these sub-samples (and on the full

sample/‘population’), we ran embedding regression with covariates—party (Republican or Democrat), age

group, gender, and race—and with each user weighted equally in the models (rather than by tweet frequency).

In the figure, the points indicate the mean of the squared Euclidean norm for party, with intervals for the

2.5% to 97.5% quantiles of the sampling distribution.

Here, in real data and with many repeat documents for authors, the correction accurately measures

distance for small sample sizes. However, we also see a wide sampling distribution, suggesting that relatively

large sample sizes and/or large effect sizes are likely to be needed to reliably measure differences between

groups.

Constructing confidence intervals is difficult

Despite the feasibility of the debiased estimator and the accuracy of related permutation tests (i.e., accurate

calculations of the distribution of a null), the construction of confidence intervals with proper coverage at

all values of the latent distance—and for complex designs in particular—is challenging. While the natural

impulse is to use resampling methods with the debiased estimator, this is unfortunately an understood

failure case for the bootstrap (Dodd and Korn, 2007), which we illustrate in SI Section C.4. Bootstrapped

confidence intervals tend to contain more than nominal coverage, meaning that a 95% CI will have greater

3Permutation tests are unaffected by estimate corrections in simple designs.
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Figure 3: Estimator performance on sub-samples of Twitter data set.

than 95% coverage, especially for small effect sizes. We instead recommend the jackknife which outperforms

the bootstrap (see, again, SI Section C.4), but does still over-cover when the true distance is small.

5 Discussion

When social scientists compute distance between vectors the risk of bias is considerable. We studied this

bias and suggested ways to mitigate it. These methods work in real and simulated settings, and will be

implemented in free statistical software.

6 Data availability statement

All code to reproduce the simulations and data analyses in this paper will be made publicly available in our

replication materials and posted to an online repository (e.g., osf.io). The social media data is publicly

viewable but, due to new API access restrictions, the text of shareable tweet ID’s can no longer be downloaded

in bulk through Twitter’s academic API. We will be unable to share raw text data to reproduce analyses,

except as aggregated model output.

8

osf.io


7 Competing Interests

The authors have no competing interests to report.

8 Research with Human Subjects

Analysis of Twitter data linked to voter records was approved by the Cornell University Institutional Review

Board (IRB #143475, exempt).

References

Dodd, Lori E and Edward L Korn. 2007. “The Bootstrap Variance of the Square of a Sample Mean.” The

American Statistician 61(2):127–131.

Gentzkow, Matthew, Jesse M. Shapiro and Matt Taddy. 2019. “Measuring Group Differences in High-

Dimensional Choices: Method and Application to Congressional Speech.” Econometrica 87(4):1307–1340.

Hughes, Adam G, Stefan D McCabe, William R Hobbs, Emma Remy, Sono Shah and David M J Lazer.

2021. “Using Administrative Records and Survey Data to Construct Samples of Tweeters and Tweets.”

Public Opinion Quarterly 85(S1):323–346.

Kindel, Alexander T. 2023. “Geometrically consistent estimation of multidimensional word associations in

text corpora.”.

Kraft, Patrick W. and Robert Klemmensen. 2023. “Lexical Ambiguity in Political Rhetoric: Why Morality

Doesn’t Fit in a Bag of Words.” British Journal of Political Science pp. 1–19.

Logan, John R, Andrew Foster, Jun Ke and Fan Li. 2018. “The uptick in income segregation: Real trend or

random sampling variation?” American Journal of Sociology 124(1):185–222.

Mozer, Reagan, Luke Miratrix, Aaron Russell Kaufman and L. Jason Anastasopoulos. 2020. “Matching with

Text Data: An Experimental Evaluation of Methods for Matching Documents and of Measuring Match

Quality.” Political Analysis 28(4):445–468.

Nyarko, Julian and Sarath Sanga. 2022. “A Statistical Test for Legal Interpretation: Theory and Applica-

tions.” The Journal of Law, Economics, and Organization 38(2):539–569.

9



Rodriguez, Pedro L., Arthur Spirling and Brandon M. Stewart. 2023. “Embedding Regression: Models for

Context-Specific Description and Inference.” American Political Science Review pp. 1–20.

Rossiter, Erin L. 2022. “Measuring Agenda Setting in Interactive Political Communication.” American

Journal of Political Science 66(2):337–351.

van Loon, Austin, Salvatore Giorgi, Robb Willer and Johannes Eichstaedt. 2022. Negative Associations in

Word Embeddings Predict Anti-black Bias across Regions–but Only via Name Frequency. In Proceedings

of the International AAAI Conference on Web and Social Media. Vol. 16 pp. 1419–1424.

Walther, Alexander, Hamed Nili, Naveed Ejaz, Arjen Alink, Nikolaus Kriegeskorte and Jörn Diedrichsen.

2016. “Reliability of Dissimilarity Measures for Multi-Voxel Pattern Analysis.” NeuroImage 137:188–200.

Weir, Jason T., David J. Wheatcroft and Trevor D. Price. 2012. “The Role of Ecological Constraint in

Driving the Evolution of Avian Song Frequency Across a Latitudinal Gradient: Evolution of Birdsong.”

Evolution 66(9):2773–2783.

10



Supporting information for:

“Measuring Distances in High Dimensional Spaces

Why Average Group Vector Comparisons Exhibit Bias, And What to Do

About it”

Table of Contents

A Illustration of correction with R code 1

B Twitter data tests 3

C Supplementary figures and tables 4

C.1 Illustration of bias from folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

C.2 (Unsquared) corrected Euclidean distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

C.3 Bimodality of corrected Euclidean distance . . . . . . . . . . . . . . . . . . . . . . . . . . 6

C.4 Bootstrapping: challenges, coverage of confidence intervals . . . . . . . . . . . . . . . . . . 8

C.5 Effects of whitening embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

C.6 Covariates and clustering: corrections and simulations . . . . . . . . . . . . . . . . . . . . 13

C.7 Cosine similarity correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



library(MASS)
library(tidyverse)
library(broom)

Example debiasing function
This is a simplified illustration of our debiasing method. The conText package will be implemented more
efficiently and robustly. The debiasing step in the function below is highlighted with ####.
debiased_estimates <- function(

mod # e.g., model output from lm() -- R's main linear regression function
# for independent observations
# or the estimatr package's lm_robust() to calculate clustered standard errors
# for non-independent observations

) {
mod_df <- tidy(mod) # convert model summary to data frame
#
# (unbiased) beta hats to (biased) squared beta hats
mod_df$biased_sqrd_beta <- mod_df$estimateˆ2
#
mod_df$beta_variance <- mod_df$std.errorˆ2 # beta standard error to beta variance
#
##### This is debiasing step: ####
# subtract estimated beta variance from squared beta hats
mod_df$debiased_sqrd_beta <- mod_df$biased_sqrd_beta - mod_df$beta_variance
#
return(mod_df)

}

Simulate data
In this simulation, the true value (i.e., the expected value) of the squared Euclidean norm on the difference
between embeddings vectors is 0 – because the groups have been randomly assigned. We demonstrate that
the debiased estimator returns 0 in the section “Average of 10,000 estimates” below.
simulate_data_k2 <- function(n = 500, group_imbalance = c(0.9, 0.1)) {

list(
# a (random) dummy variable for group membership
random_groups = sample(c(0, 1), size = n, replace = TRUE, prob = group_imbalance),
# these k=2 "embeddings" are just the example in the help file of mvrnorm()
embeddings = mvrnorm(n = n, mu = rep(0, 2), matrix(c(10,3,3,2),2,2))

)
}

Single dimension illustration

set.seed(987654321)

simulated_data <- simulate_data_k2()

A Illustration of correction with R code

1



embeddings <- simulated_data[["embeddings"]]
random_groups <- simulated_data[["random_groups"]]

mod_d1 <- lm(
# run a regression with the group indicator as x and the first embedding dimension as y
embeddings[,1] ~ random_groups

)

debiased_estimates(mod_d1) |>
select(term, biased_sqrd_beta, beta_variance, debiased_sqrd_beta) |>
filter(term != "(Intercept)")

# we remove the intercept estimate for this illustration but it can be used in
# intercept only models, e.g., y ~ 1 and one of these intercept regressions for each
# compared group, to correct the denominator of a cosine similarity calculation

term biased_sqrd_beta beta_variance debiased_sqrd_beta
random_groups 0.24 0.21 0.03

Multiple dimension illustration

mod_d2 <- lm( # run a separate regression with the second embedding dimension as y
embeddings[,2] ~ random_groups

)

all_debiased_sqrd_betas <- bind_rows(
# stack estimates from models 1 and 2 for the squared Euclidean norm below
debiased_estimates(mod_d1),
debiased_estimates(mod_d2)

) |>
filter(term != "(Intercept)")

all_debiased_sqrd_betas |>
# calculate the squared Euclidean norm for each x variable (here, only 1 of them)
group_by(term) |>
summarize(

biased_sqrd_euclidean_norm = sum(biased_sqrd_beta),
debiased_sqrd_euclidean_norm = sum(debiased_sqrd_beta)

)

term biased_sqrd_euclidean_norm debiased_sqrd_euclidean_norm
random_groups 0.28 0.02

Average of 10,000 estimates
Repeating the above code for 10,000 simulated samples, mean estimates are:

term biased_sqrd_euclidean_norm.mean debiased_sqrd_euclidean_norm.mean
random_groups 0.27 0
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B Twitter data tests

For the Twitter data tests, we use data from a panel of Twitter users, described in (Hughes et al., 2021).

Users in this panel were linked to voter records, which included basic demographic information and vote

histories. We down-sample the large panel to only users whose user IDs ended with eight, and analyzed

tweets between January 2019 and February 2023 that contained the words “children” (illustration of bias

in Figure 1), “people” (large sample illustration of bias and correction in Figure 3), or “racism” (Tables

C.8 and C.9; Figures C.12 and C.13 – assessing correction for plausibly larger main effects and covariate

effects).

Context-dependent word embeddings are drawn from the a la carte embedding approach described in

(Rodriguez, Spirling and Stewart, 2023). This approach assigns context-dependent word embeddings (the

200d Twitter embeddings from GloVe (Pennington, Socher and Manning, 2014):

https://nlp.stanford.edu/projects/glove/) for the word ‘people’ based on the words that appear

near the word people in each tweet. Our analyses study the squared Euclidean norm of distances across

groups for these embeddings.
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C Supplementary figures and tables

C.1 Illustration of bias from folding

If, across samples or noisy measurements, the values that we estimate for β (the unobserved sampling

distribution of β̂) are sometimes greater than their true values and sometimes less than, our distances are

nonetheless always positive – and so, in expectation, greater than the true value of β.

We illustrate this folding effect in Figure C.1.

β=0.5 E[β̂] = 0.5

−4 −2 0 2 4

β̂

|β| = 0.5

E[|β̂|] > 0.5

−4 −2 0 2 4

|β̂|

Figure C.1: Illustration of bias from folding. In the right panel, negative values (in red) for β̂ become positive

after squaring and then taking the square root (equivalent to |β̂| in this uni-dimensional illustration).

Less intuitively, squared Euclidean distance estimates are biased even when the sampling (or

measurement error) distribution (unrealistically) never spans 0. If we split a positively or negatively

bounded (and non-constant) distribution in exactly half at its expected value, the expected value of the

half further from 0 will increase more (or, if originally less than 1, decrease less) after squaring than the

expected value of the half closer to it will.
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C.2 (Unsquared) corrected Euclidean distance
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Figure C.2: This figure shows simulation results for the ordinary (unsquared) Euclidean norm. The horizontal
black lines represent the true Euclidean norm, divided by the number of dimensions (50). Points represent
average of the simulations and intervals are the 2.5% to 97.5% quantiles of the sampling distribution.

C.2.1 (Unsquared) Euclidean distance bias

An expression of the bias for the Euclidean norm must, to our knowledge, be distribution dependent. For

example, for the case of k = 1, we can use the properties of the half normal distribution (for a β̂ that is

normally distributed for large N , by the central limit theorem) to get an expression for the expected value

of the absolute value of β̂: E[|β̂|] = σ
√

2
π e

−β2

2σ2 + βerf
(

β√
2σ2

)
, where erf indicates the error function and σ

the standard deviation of β̂ (i.e., the standard error). E[β̂] = β. This reduces to E[|β̂|] = σ
√

2
π when β = 0.
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C.3 Bimodality of corrected Euclidean distance

Unlike the squared Euclidean distance estimator, the ordinary Euclidean distance estimator is strongly

bimodal. We suspect the bimodality in particular may make this estimator somewhat difficult for many

readers to interpret. We illustrate this bimodality and potential interpretation problem in Figures C.3 and

C.4, where we show the same estimates with and without squaring. In the squared version, we think that

the distribution resembles what an average reader would expect to see for estimates of no difference. In the

unsquared version, some readers may interpret estimates further from 0 as being more distinct from 0 than

they really are – they are far from 0 only because the distribution of this estimator has low density close to

zero.

Given this, and while we think it is reasonable to prefer the ordinary Euclidean distance, authors who

use this corrected distance measure may need to be careful to fully explain its bimodal distribution – and

the reason for heavily skewed confidence intervals.
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Figure C.3: Distribution of corrected Euclidean distance estimates for N=1,000 across 500 samples from
Twitter data for term ‘people’.
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Figure C.4: 10 corrected Euclidean distance estimates for N=1,000, equal group comparisons, and different
effect sizes – from simulations shown in Figure C.2.
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Figure C.5: Distribution of corrected squared Euclidean distance estimates for N=1,000 across 500 samples
from Twitter data for term ‘people’.
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Figure C.6: 10 corrected squared Euclidean distance estimates for N=1,000, equal group comparisons, and
different effect sizes – from simulations shown in Figure 2.
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C.4 Bootstrapping: challenges, coverage of confidence intervals

We assess whether bootstrapping and/or the jackknife can be used to construct confidence intervals for the

squared Euclidean norm.

For the bootstrap, we calculate the coverage of a bootstrapped confidence interval with 500 replicates

for our main simulations described in the main text (see Figure 2) for the case of N=1,000. Meaning, we

calculate the fraction of (true) squared Euclidean norms that fall within the range of 2.5% to 97.5%

quantiles of the bootstrap distribution (after subtracting double the calculated variance of each estimate –

since, as we show in Figure C.7, the mean of the bootstrap distribution is biased by double the variance).

For the jackknife, we use the leave-one-out method to construct standard errors and confidence

intervals.

These results are shown in Figures C.8 and C.9. For effect size values less than around 0.5, “95%”

confidence intervals contain more than 95% of the true/assigned effect size. The jackknife appears to have

closer to nominal coverage because for effect sizes less than 0.1 it has coverage of around 98% for a “95%”

confidence interval while the bootstrap is around 100%.

In Figure C.10, we show similar coverage for the method in Hyodo, Watanabe and Seo (2018).

We also test the jackknife using Congressional Record data from Sessions 111-114 (Gentzkow, Shapiro

and Taddy, 2018). To do this, we select target words with varying degrees of gender and partisan

differences and obtain locally trained embeddings with context window size six. We fit an embedding

regression with party or gender as a covariate and define the (non-deflated) squared Euclidean norm of the

coefficients as the true parameter. We simulate sampling distributions from this ‘population’ of

embeddings by taking sub-samples of varying sizes (n = 100, n = 500, n = 1000) and estimate the same

regression, using the jackknife to calculate confidence intervals. For each target word and sub-sample size,

we replicate the simulation process 1000 times and calculate the jackknife coverage as described above.

Coverage results for each embedding regression specification are shown in Table C.1. Similar to the

coverage we obtain using simulated data, the jackknife has a coverage of around 98% for a “95%”

confidence interval for effect sizes close to 0, but has closer to nominal coverage for larger effect sizes.
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Figure C.7: Bootstrapping doubles the variance bias (from simulations in main text Figure 2).
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Figure C.8: Coverage of bootstrapped and doubly corrected norm for N=1,000.
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Figure C.9: Coverage of jackknife for N=1,000.
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Figure C.10: Coverage of Hyodo, Watanabe and Seo (2018) confidence intervals for N=1,000.
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Embedding Regression Squared Norm Total observations Coverage by Sub-sample Size
Full Sample Estimate n = 100 n = 500 n = 1000

children ∼ gender 0.62 50,191 0.994 0.984 0.980
nation ∼ party 0.82 49,777 0.989 0.976 0.975
president ∼ party 3.08 220,944 0.965 0.941 0.935
health ∼ party 3.16 133,797 0.978 0.952 0.941
women ∼ gender 5.01 46,802 0.952 0.946 0.958
abortion ∼ party 6.57 6,670 0.982 0.96 0.956
climate ∼ party 6.98 12,641 0.936 0.915 0.943
hispanic ∼ party 7.45 1,565 0.983 0.956 0.955
black ∼ party 11.77 6,945 0.975 0.960 0.957
unemployment ∼ party 12.01 21,398 0.945 0.951 0.944
wage ∼ party 21.75 6,471 0.910 0.942 0.926
gun ∼ party 22.64 10,446 0.956 0.958 0.943
immigrants ∼ party 24.99 4,677 0.928 0.946 0.952

Table C.1: Coverage of jackknife on full Congressional Record data for N=100, N=500, and N=1000.
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C.5 Effects of whitening embeddings

Our method corrects bias related to the variance of an estimated β̂ rather than variance in the data itself.

If we equalize variance in the data, like by whitening a matrix and then calculating Euclidean distance

(i.e., Mahalanobis distance), this re-introduces bias. Intuitively, this introduces bias because (large)

differences between groups increase the variance of the data without altering the variance of an estimator.

Further, whitening the embeddings of groups separately prior to comparing them would place them into

different and incomparable embedding spaces.

In Figure C.11, we re-run our main simulation shown in Figure 2 but whiten the matrix prior to

calculating distances. This whitening step equalizes the variance of every embedding dimension and

removes covariance across embedding dimensions.
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Figure C.11: Estimated squared Euclidean distance on a whitened embedding matrix. In this analysis,
the simulated embeddings are whitened prior to calculating squared Euclidean distance. Whitening the
embeddings of groups separately prior to comparing them would place them into different and incomparable
embedding spaces.
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C.6 Covariates and clustering: corrections and simulations

Clustering

If responses are not independent, then we can under-estimate the variance of our β̂, just as in ordinary

linear regression. The solution for this is straightforward – we can cluster our standard errors using

standard practices. We demonstrate in Table C.2 that a) not accounting for clustering biases estimates and

b) we can fix that bias through the approaches just described. For estimating clustered standard errors, we

use the ‘estimatr’ R package (Blair et al., 2024) and “stata” (CR1) type cluster-robust standard errors.

Further, we must also permute our outcomes at the cluster level to return valid p-values. Without

accounting for clustering, we will tend to over-reject the null due to a permutation distribution that is too

narrow and that also has a downward bias. These problems and their fix in simulations is are shown in

Tables C.4 and C.7.

Expanding our main text derivation to

E
[
∥θ̂ − ϕ̂∥22

]
= ∥θ − ϕ∥22 +

K∑
k=1

V [θ̂k − ϕ̂k] (5)

= ∥θ − ϕ∥22 +
K∑

k=1

(
V [θ̂k] + V [ϕ̂k]− 2Cov[θ̂k, ϕ̂k]

)
(6)

our clustered standard error approach on the difference corrects for both inaccurately estimated

variances and the covariance term. This covariance term can be non-zero when, for example, the same

author’s text embeddings are included in the averages of both compared vectors. We demonstrate the

efficacy of this covariance correction in the “non-independent contrast” results in SI Table C.4, where the

same errors are included in both compared vectors in a cross-over design.

Multiple regression

If we use a regression approach, like (Rodriguez, Spirling and Stewart, 2023), then we need to account for

the possibility that highly predictive variables will reduce the variability of other estimates. In permutation

tests that permute our outcomes, we remove the effect of that increased precision (setting all associations

to 0 on average) and, if we do have predictive variables, then over-estimate the variance of our β̂’s.

The primary solution to this issue is a) to use standard errors from the regression rather than using

permutation to estimate variance and b) permuting the residuals from our regression rather than the

13



outcome. We demonstrate that full model residual permutation produces accurate estimates and valid

p-values in Tables C.3 and C.6.

Below, we conduct simulations that are the same as those in the main paper, but we restrict our

sample size to 1,000, use 1,000 replicates (rather than 500), and also for:

• (maximum) clustering: duplicate each observation (each observation appears twice)

• (strong) covariate: assign a covariate with c = 10 (a very large effect size)

• non-independent contrasts (a crossover design): duplicate each observation – but with the duplicate

observation in the opposite group as the original

In reporting estimates, we calculate the average estimates using the squared norm before taking the

pseudo square root. Meaning, the estimates below are for the unbiased correction – we have only applied a

pseudo square root so that we can still see bias (and lack of bias after correction) in the uncorrected

squared norm for effect sizes equal to 0.

C.6.1 Simulation estimates

True value Uncorrected es-
timate

Subtract regres-
sion variances

Subtract clus-
tered regres-
sion variances

0.002 0.092 0.062 0.012

0.712 0.712 0.712 0.712

Table C.2: Normed estimates: (maximum) clustering only

True value Uncorrected es-
timate

Subtract regres-
sion variances

Subtract clus-
tered regres-
sion variances

0.002 0.092 0.062 0.012

0.712 0.712 0.712 0.712

Table C.3: Normed estimates: (maximum) clustering and (strong) covariate
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True value Uncorrected es-
timate

Subtract regres-
sion variances

Subtract clus-
tered regres-
sion variances

no covariate 0.002 0.042 -(0.062) -(0.002)
strong covariate 0.002 0.042 -(0.062) 0.002

no covariate 0.712 0.712 0.702 0.712

strong covariate 0.712 0.712 0.702 0.712

Table C.4: Normed estimates: (maximum) clustering and non-independent contrasts (i.e., a crossover design)
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C.6.2 Simulation p-values

True fraction < 0.05 Permutation
test

Clustered
permuta-
tion test

Clustered
residuals per-
mutation test

0.05 0.73 0.04 0.04

Table C.5: P-values: (maximum) clustering only

True fraction < 0.05 Permutation
test

Clustered
permutation
test

Clustered
residuals per-
mutation test

0.05 0.00 0.00 0.05

Table C.6: P-values: (maximum) clustering only and (strong) covariate

True fraction < 0.05 Permutation
test

Clustered
permuta-
tion test

Clustered
residuals per-
mutation test

no covariate 0.05 0.00 0.05 0.05
strong covariate 0.05 0.00 0.06 0.05

Table C.7: P-values: (maximum) clustering only and non-independent contrasts (i.e., a crossover design)
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C.6.3 Twitter p-values

We further assessed the performance of the clustered permutations on the Twitter data using the same

sampling procedure as used in Figure 3 for the term ‘racism’. ‘Racism’ is less common than the terms

‘people’ and ‘children’ and it is also more likely to be strongly associated with covariates (which can affect

the performance of permutation tests). In these tests, each tweet is weighted inversely proportional to the

number of tweets that a user posted in the sample overall (e.g., each observation of a user who posted twice

will receive a weight of 1
2 ). Embeddings are permuted at the user level, whether or not a user has posted

the same number of tweets, and each tweet is then re-weighted using a user’s new number of tweets after

permutation.

In that data, clustered permutation appropriately controls type I error and ordinary permutation

slightly over-rejects the null. Clustered residual permutation slightly over-rejects, though it over-rejects less

than non-clustered residual permutation. Based on this, we suspect that the ordinary permutation test may

perform relatively well on most data sets – except for cases where there is substantial duplication in the

embedding observations (e.g., many observations drawn from one very short document), which would more

closely resemble the extreme correlation across observations considered in the simulations in Section C.6.2.

A Hotelling T 2 test as well as an estimator (Chen and Qin, 2010) for settings where the number of

embedding dimensions exceeds the number of observations can also be used for simple design significance

tests (Chen and Qin, 2010; Hyodo, Watanabe and Seo, 2018), though with potentially restrictive

assumptions. We are unaware of any such estimator for complex designs, however, and we see below that it

performs poorly with non-independent observations.

True frac-
tion < 0.05

clustered
permutation

non-
clustered
permutation

Hotelling T 2

test
Hotelling T 2 test
(on single tweet
per author)

Random group: 1%-99% 0.05 0.05 0.07 0.59 0.17
Random group: 10%-90% 0.05 0.05 0.08 0.94 0.05
Random group: 50%-50% 0.05 0.05 0.09 1.00 0.04

Table C.8: P-values: Twitter sampling (500 samples of 1,000 users) and distances calculated between random
groups.
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True fraction < 0.05 clustered resid-
ual permutation

non-clustered
residual permu-
tation

Random group: 10%-90% 0.05 0.07 0.10
Random group: 50%-50% 0.05 0.06 0.09

Table C.9: P-values: Twitter sampling (500 samples of 1,000 users) and distances calculated between random
groups. Controls: age group, race, gender, party.
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C.7 Cosine similarity correction

We use the same down-sampling procedure as in Section C.6.3 (1,000 users’ uses of the word ‘racism’ on

Twitter) to analyze the performance of a corrected cosine similarity estimator, but without covariates. In

this, we corrected the Euclidean distance in the denominator of the cosine similarity calculations (the

Euclidean norm of each group’s average embedding vector), and left the numerator untouched (assuming

independence across the compared groups). Figure C.12 and C.13 display these results. Although there is a

small upward bias in the corrected estimator, that bias is far smaller than the uncorrected estimator bias.

Note, too, that this figure illustrates that group differences in embeddings surrounding the same terms may

tend to be relatively small.
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Figure C.12: Cosine similarity estimator performance on sub-samples of Twitter data set: random groups.
For this data, we use sandwich-style standard errors to estimate the variance under clustering, to account
for clustering at the user level given multiple tweets from the same users.
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Figure C.13: Cosine similarity estimator performance on sub-samples of Twitter data set: Republican average
versus Democrat average. For this data, we use sandwich-style standard errors to estimate the variance under
clustering, to account for clustering at the user level given multiple tweets from the same users.
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